Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Sep 1995; 15(9): 4939–4946.
PMCID: PMC230740

The essential DNA-binding protein sap1 of Schizosaccharomyces pombe contains two independent oligomerization interfaces that dictate the relative orientation of the DNA-binding domain.

Abstract

The sap1 gene from Schizosaccharomyces pombe, which is essential for mating-type switching and for growth, encodes a sequence-specific DNA-binding protein with no homology to other known proteins. We have used a reiterative selection procedure to isolate binding sites for sap1, using a bacterially expressed protein and randomized double-strand oligonucleotides. The sap1 homodimer preferentially selects a pentameric motif, TA(A/G)CG, organized as a direct repeat and spaced by 5 nucleotides. Removal of a C-terminal dimerization domain abolishes recognition of the direct repeat and creates a new specificity for a DNA sequence containing the same pentameric motif but organized as an inverted repeat. We present evidence that the orientation of the DNA-binding domain is controlled by two independent oligomerization interfaces. The C-terminal dimerization domain allows a head-to-tail organization of the DNA-binding domains in solution, while an N-terminal domain is involved in a cooperative interaction on the DNA target between pairs of dimers.

Full Text

The Full Text of this article is available as a PDF (484K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arcangioli B, Copeland TD, Klar AJ. Sap1, a protein that binds to sequences required for mating-type switching, is essential for viability in Schizosaccharomyces pombe. Mol Cell Biol. 1994 Mar;14(3):2058–2065. [PMC free article] [PubMed]
  • Arcangioli B, Ghazvini M, Ribes V. Identification of the DNA-binding domains of the switch-activating-protein Sap1 from S.pombe by random point mutations screening in E.coli. Nucleic Acids Res. 1994 Aug 11;22(15):2930–2937. [PMC free article] [PubMed]
  • Arcangioli B, Klar AJ. A novel switch-activating site (SAS1) and its cognate binding factor (SAP1) required for efficient mat1 switching in Schizosaccharomyces pombe. EMBO J. 1991 Oct;10(10):3025–3032. [PMC free article] [PubMed]
  • Arcangioli B, Lescure B. Identification of proteins involved in the regulation of yeast iso- 1-cytochrome C expression by oxygen. EMBO J. 1985 Oct;4(10):2627–2633. [PMC free article] [PubMed]
  • Brown DD. The role of stable complexes that repress and activate eucaryotic genes. Cell. 1984 Jun;37(2):359–365. [PubMed]
  • Fried M, Crothers DM. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. [PMC free article] [PubMed]
  • Garner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981 Jul 10;9(13):3047–3060. [PMC free article] [PubMed]
  • Hendrickson W, Schleif R. A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site. Proc Natl Acad Sci U S A. 1985 May;82(10):3129–3133. [PMC free article] [PubMed]
  • Hope IA, Struhl K. GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J. 1987 Sep;6(9):2781–2784. [PMC free article] [PubMed]
  • Klar AJ. Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast. Nature. 1987 Apr 2;326(6112):466–470. [PubMed]
  • Klar AJ. The developmental fate of fission yeast cells is determined by the pattern of inheritance of parental and grandparental DNA strands. EMBO J. 1990 May;9(5):1407–1415. [PMC free article] [PubMed]
  • Klar AJ, Bonaduce MJ, Cafferkey R. The mechanism of fission yeast mating type interconversion: seal/replicate/cleave model of replication across the double-stranded break site at mat1. Genetics. 1991 Mar;127(3):489–496. [PMC free article] [PubMed]
  • Kurokawa R, Yu VC, När A, Kyakumoto S, Han Z, Silverman S, Rosenfeld MG, Glass CK. Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers. Genes Dev. 1993 Jul;7(7B):1423–1435. [PubMed]
  • LeBowitz JH, Clerc RG, Brenowitz M, Sharp PA. The Oct-2 protein binds cooperatively to adjacent octamer sites. Genes Dev. 1989 Oct;3(10):1625–1638. [PubMed]
  • Mader S, Chen JY, Chen Z, White J, Chambon P, Gronemeyer H. The patterns of binding of RAR, RXR and TR homo- and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains. EMBO J. 1993 Dec 15;12(13):5029–5041. [PMC free article] [PubMed]
  • Perlmann T, Rangarajan PN, Umesono K, Evans RM. Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev. 1993 Jul;7(7B):1411–1422. [PubMed]
  • Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature. 1995 May 18;375(6528):203–211. [PubMed]
  • Singh J, Klar AJ. DNA polymerase-alpha is essential for mating-type switching in fission yeast. Nature. 1993 Jan 21;361(6409):271–273. [PubMed]
  • Tsai SY, Tsai MJ, O'Malley BW. Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell. 1989 May 5;57(3):443–448. [PubMed]
  • Weintraub H. Assembly and propagation of repressed and depressed chromosomal states. Cell. 1985 Oct;42(3):705–711. [PubMed]
  • Zhang L, Guarente L. The yeast activator HAP1--a GAL4 family member--binds DNA in a directly repeated orientation. Genes Dev. 1994 Sep 1;8(17):2110–2119. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...