• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Jul 1995; 15(7): 3882–3891.
PMCID: PMC230628

RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element.

Abstract

R2 is a non-long terminal repeat-retrotransposable element that inserts specifically in the 28S rRNA gene of most insects. The single protein encoded by R2 has been shown to contain both site-specific endonuclease and reverse transcriptase activities. Integration of the element involves cleavage of one strand of the 28S target DNA and the utilization of the exposed 3' hydroxyl group to prime the reverse transcription of the R2 RNA transcript. We have characterized the RNA requirement of this target DNA-primed reverse transcription reaction and found that the 250 nucleotides corresponding to the 3' untranslated region of the R2 transcript were necessary and sufficient for the reaction. To investigate the sequence requirements at the site of reverse transcription initiation, a series of RNA templates that contained substitutions and deletions at the extreme 3' end of the RNA were tested. The R2 templates used most efficiently had 3' ends which corresponded to the precise boundary of the R2 element with the 28S gene found in vivo. Transcripts containing short polyadenylated tails (8 nucleotides) were not utilized efficiently. R2 RNAs that were truncated at their 3' ends by 3 to 6 nucleotides were used less efficiently as templates and then only after the R2 reverse transcriptase had added extra, apparently nontemplated, nucleotides to the target DNA. The ability of the reverse transcriptase to add additional nucleotides to the target DNA before engaging the RNA template might be a mechanism for the generation of poly(A) or simple repeat sequences found at the 3' end of most non-long terminal repeat-retrotransposable elements.

Full Text

The Full Text of this article is available as a PDF (406K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Besansky NJ. A retrotransposable element from the mosquito Anopheles gambiae . Mol Cell Biol. 1990 Mar;10(3):863–871. [PMC free article] [PubMed]
  • Besansky NJ, Bedell JA, Mukabayire O. Q: a new retrotransposon from the mosquito Anopheles gambiae. Insect Mol Biol. 1994 Feb;3(1):49–56. [PubMed]
  • Boeke JD, Corces VG. Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol. 1989;43:403–434. [PubMed]
  • Bucheton A. I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet. 1990 Jan;6(1):16–21. [PubMed]
  • Burch JB, Davis DL, Haas NB. Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8199–8203. [PMC free article] [PubMed]
  • Burke WD, Calalang CC, Eickbush TH. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol Cell Biol. 1987 Jun;7(6):2221–2230. [PMC free article] [PubMed]
  • Burke WD, Eickbush DG, Xiong Y, Jakubczak J, Eickbush TH. Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol. 1993 Jan;10(1):163–185. [PubMed]
  • Chiang CC, Kennell JC, Wanner LA, Lambowitz AM. A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination. Mol Cell Biol. 1994 Oct;14(10):6419–6432. [PMC free article] [PubMed]
  • Deng G, Wu R. Terminal transferase: use of the tailing of DNA and for in vitro mutagenesis. Methods Enzymol. 1983;100:96–116. [PubMed]
  • Dombroski BA, Feng Q, Mathias SL, Sassaman DM, Scott AF, Kazazian HH, Jr, Boeke JD. An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jul;14(7):4485–4492. [PMC free article] [PubMed]
  • Doolittle RF, Feng DF, Johnson MS, McClure MA. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. [PubMed]
  • Eickbush DG, Eickbush TH. Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics. 1995 Feb;139(2):671–684. [PMC free article] [PubMed]
  • Eickbush DG, Lathe WC, 3rd, Francino MP, Eickbush TH. R1 and R2 retrotransposable elements of Drosophila evolve at rates similar to those of nuclear genes. Genetics. 1995 Feb;139(2):685–695. [PMC free article] [PubMed]
  • Evans JP, Palmiter RD. Retrotransposition of a mouse L1 element. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8792–8795. [PMC free article] [PubMed]
  • Fawcett DH, Lister CK, Kellett E, Finnegan DJ. Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. 1986 Dec 26;47(6):1007–1015. [PubMed]
  • Furano AV, Somerville CC, Tsichlis PN, D'Ambrosio E. Target sites for the transposition of rat long interspersed repeated DNA elements (LINEs) are not random. Nucleic Acids Res. 1986 May 12;14(9):3717–3727. [PMC free article] [PubMed]
  • Jakubczak JL, Burke WD, Eickbush TH. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3295–3299. [PMC free article] [PubMed]
  • Jakubczak JL, Xiong Y, Eickbush TH. Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J Mol Biol. 1990 Mar 5;212(1):37–52. [PubMed]
  • Jensen S, Heidmann T. An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J. 1991 Jul;10(7):1927–1937. [PMC free article] [PubMed]
  • Kim A, Terzian C, Santamaria P, Pélisson A, Purd'homme N, Bucheton A. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1285–1289. [PMC free article] [PubMed]
  • Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993 Dec 17;75(6):1083–1093. [PubMed]
  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. [PubMed]
  • Milligan JF, Uhlenbeck OC. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. [PubMed]
  • Pélisson A, Finnegan DJ, Bucheton A. Evidence for retrotransposition of the I factor, a LINE element of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4907–4910. [PMC free article] [PubMed]
  • Sandmeyer SB, Hansen LJ, Chalker DL. Integration specificity of retrotransposons and retroviruses. Annu Rev Genet. 1990;24:491–518. [PubMed]
  • Schwarz-Sommer Z, Leclercq L, Göbel E, Saedler H. Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons. EMBO J. 1987 Dec 20;6(13):3873–3880. [PMC free article] [PubMed]
  • Song SU, Gerasimova T, Kurkulos M, Boeke JD, Corces VG. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 1994 Sep 1;8(17):2046–2057. [PubMed]
  • Wahle E, Keller W. The biochemistry of 3'-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem. 1992;61:419–440. [PubMed]
  • Wang H, Kennell JC, Kuiper MT, Sabourin JR, Saldanha R, Lambowitz AM. The Mauriceville plasmid of Neurospora crassa: characterization of a novel reverse transcriptase that begins cDNA synthesis at the 3' end of template RNA. Mol Cell Biol. 1992 Nov;12(11):5131–5144. [PMC free article] [PubMed]
  • Wang H, Lambowitz AM. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor. Cell. 1993 Dec 17;75(6):1071–1081. [PubMed]
  • Weiner AM, Deininger PL, Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. [PubMed]
  • Whitcomb JM, Hughes SH. Retroviral reverse transcription and integration: progress and problems. Annu Rev Cell Biol. 1992;8:275–306. [PubMed]
  • Xiong YE, Eickbush TH. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell. 1988 Oct 21;55(2):235–246. [PubMed]
  • Xiong Y, Eickbush TH. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol. 1988 Nov;5(6):675–690. [PubMed]
  • Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. [PMC free article] [PubMed]
  • Xiong Y, Eickbush TH. Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. Nucleic Acids Res. 1993 Mar 11;21(5):1318–1318. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...