• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. May 1995; 15(5): 2625–2634.
PMCID: PMC230492

Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos.


Wnts are secreted signaling factors which influence cell fate and cell behavior in developing embryos. Overexpression in Xenopus laevis embryos of a Xenopus Wnt, Xwnt-8, leads to a duplication of the embryonic axis. In embryos ventralized by UV irradiation, Xwnt-8 restores expression of the putative transcription factor goosecoid, and rescues normal axis formation. In contrast, overexpression of Xwnt-5A in normal embryos generates defects in dorsoanterior structures, without inducing goosecoid or a secondary axis. To determine whether Xwnt-4 and Xwnt-11 fall into one of these two previously described classes of activity, synthetic mRNAs were introduced into animal caps, normal embryos, and UV-treated embryos. The results indicate that Xwnt-4, Xwnt-5A, and Xwnt-11 are members of a single functional class with activities that are indistinguishable in these assays. To investigate whether distinct regions of Xwnt-8 and Xwnt-5A were sufficient for eliciting the observed effects of overexpression, we generated a series of chimeric Xwnts. RNAs encoding the chimeras were injected into normal and UV-irradiated Xenopus embryos. Analysis of the embryonic phenotypes and goosecoid levels reveals that chimeras composed of carboxy-terminal regions of Xwnt-8 and amino-terminal regions of Xwnt-5A are indistinguishable from the activities of native Xwnt-8 and that are the reciprocal chimeras elicit effects indistinguishable from overexpression of native Xwnt-5A. We conclude that the carboxy-terminal halves of these Xwnts are candidate domains for specifying responses to Xwnt signals.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baker NE. Embryonic and imaginal requirements for wingless, a segment-polarity gene in Drosophila. Dev Biol. 1988 Jan;125(1):96–108. [PubMed]
  • Chakrabarti A, Matthews G, Colman A, Dale L. Secretory and inductive properties of Drosophila wingless protein in Xenopus oocytes and embryos. Development. 1992 May;115(1):355–369. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Christian JL, McMahon JA, McMahon AP, Moon RT. Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development. 1991 Apr;111(4):1045–1055. [PubMed]
  • Couso JP, Martinez Arias A. Notch is required for wingless signaling in the epidermis of Drosophila. Cell. 1994 Oct 21;79(2):259–272. [PubMed]
  • Horton RM, Cai ZL, Ho SN, Pease LR. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 May;8(5):528–535. [PubMed]
  • Hume CR, Dodd J. Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development. 1993 Dec;119(4):1147–1160. [PubMed]
  • Jue SF, Bradley RS, Rudnicki JA, Varmus HE, Brown AM. The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol Cell Biol. 1992 Jan;12(1):321–328. [PMC free article] [PubMed]
  • Kao KR, Elinson RP. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev Biol. 1988 May;127(1):64–77. [PubMed]
  • Kelly GM, Eib DW, Moon RT. Histological preparation of Xenopus laevis oocytes and embryos. Methods Cell Biol. 1991;36:389–417. [PubMed]
  • Ku M, Melton DA. Xwnt-11: a maternally expressed Xenopus wnt gene. Development. 1993 Dec;119(4):1161–1173. [PubMed]
  • Malacinski GM, Benford H, Chung HM. Association of an ultraviolet irradiation sensitive cytoplasmic localization with the future dorsal side of the amphibian egg. J Exp Zool. 1975 Jan;191(1):97–110. [PubMed]
  • Mason JO, Kitajewski J, Varmus HE. Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line. Mol Biol Cell. 1992 May;3(5):521–533. [PMC free article] [PubMed]
  • McGrew LL, Otte AP, Moon RT. Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate. Development. 1992 Jun;115(2):463–473. [PubMed]
  • McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell. 1990 Sep 21;62(6):1073–1085. [PubMed]
  • McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell. 1989 Sep 22;58(6):1075–1084. [PubMed]
  • Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development. 1993 Sep;119(1):97–111. [PubMed]
  • Moon RT, Christian JL, Campbell RM, McGrew LL, DeMarais AA, Torres M, Lai CJ, Olson DJ, Kelly GM. Dissecting Wnt signalling pathways and Wnt-sensitive developmental processes through transient misexpression analyses in embryos of Xenopus laevis. Dev Suppl. 1993:85–94. [PubMed]
  • Morata G, Lawrence PA. The development of wingless, a homeotic mutation of Drosophila. Dev Biol. 1977 Apr;56(2):227–240. [PubMed]
  • Nusse R, Varmus HE. Wnt genes. Cell. 1992 Jun 26;69(7):1073–1087. [PubMed]
  • Olson DJ, Christian JL, Moon RT. Effect of wnt-1 and related proteins on gap junctional communication in Xenopus embryos. Science. 1991 May 24;252(5009):1173–1176. [PubMed]
  • Parkin NT, Kitajewski J, Varmus HE. Activity of Wnt-1 as a transmembrane protein. Genes Dev. 1993 Nov;7(11):2181–2193. [PubMed]
  • Scharf SR, Gerhart JC. Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation. Dev Biol. 1983 Sep;99(1):75–87. [PubMed]
  • Smith WC, Harland RM. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell. 1991 Nov 15;67(4):753–765. [PubMed]
  • Sokol S, Christian JL, Moon RT, Melton DA. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell. 1991 Nov 15;67(4):741–752. [PubMed]
  • Steinbeisser H, De Robertis EM, Ku M, Kessler DS, Melton DA. Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development. 1993 Jun;118(2):499–507. [PubMed]
  • Stewart RM, Gerhart JC. The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula. Development. 1990 Jun;109(2):363–372. [PubMed]
  • Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990 Aug 30;346(6287):847–850. [PubMed]
  • Wolda SL, Moody CJ, Moon RT. Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev Biol. 1993 Jan;155(1):46–57. [PubMed]
  • Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol. 1994 Sep;14(9):6278–6286. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree