• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. Jun 2, 1994; 125(6): 1341–1352.
PMCID: PMC2290918

Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells

Abstract

The cadherin/catenin complex plays important roles in cell adhesion, signal transduction, as well as the initiation and maintenance of structural and functional organization of cells and tissues. In the preceding study, we showed that the assembly of the cadherin/catenin complex is temporally regulated, and that novel combinations of catenin and cadherin complexes are formed in both Triton X-100-soluble and - insoluble fractions; we proposed a model in which pools of catenins are important in regulating assembly of E-cadherin/catenin and catenin complexes. Here, we sought to determine the spatial distributions of E- cadherin, alpha-catenin, beta-catenin, and plakoglobin, and whether different complexes of these proteins accumulate at steady state in polarized Madin-Darby canine kidney cells. Protein distributions were visualized by wide field, optical sectioning, and double immunofluorescence microscopy, followed by reconstruction of three- dimensional images. In cells that were extracted with Triton X-100 and then fixed (Triton X-100-insoluble fraction), more E-cadherin was concentrated at the apical junction relative to other areas of the lateral membrane. alpha-Catenin and beta-catenin colocalize with E- cadherin at the apical junctional complex. There is some overlap in the distribution of these proteins in the lateral membrane, but there are also areas where the distributions are distinct. Plakoglobin is excluded from the apical junctional complex, and its distribution in the lateral membrane is different from that of E-cadherin. Cells were also fixed and then permeabilized to reveal the total cellular pool of each protein (Triton X-100-soluble and -insoluble fractions). This analysis showed lateral membrane localization of alpha-catenin, beta- catenin, and plakoglobin, and it also revealed that they are distributed throughout the cell. Chemical cross-linking of proteins and analysis with specific antibodies confirmed the presence at steady state of E-cadherin/catenin complexes containing either beta-catenin or plakoglobin, and catenin complexes devoid of E-cadherin. Complexes containing E-cadherin/beta-catenin and E-cadherin/alpha-catenin are present in both the Triton X-100-soluble and -insoluble fractions, but E-cadherin/plakoglobin complexes are not detected in the Triton X-100- insoluble fraction. Taken together, these results show that different complexes of cadherin and catenins accumulate in fully polarized epithelial cells, and that they distribute to different sites. We suggest that cadherin/catenin and catenin complexes at different sites have specialized roles in establishing and maintaining the structural and functional organization of polarized epithelial cells.

Full Text

The Full Text of this article is available as a PDF (4.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Agard DA, Hiraoka Y, Shaw P, Sedat JW. Fluorescence microscopy in three dimensions. Methods Cell Biol. 1989;30:353–377. [PubMed]
  • Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol. 1993 Feb;120(3):757–766. [PMC free article] [PubMed]
  • Boller K, Vestweber D, Kemler R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J Cell Biol. 1985 Jan;100(1):327–332. [PMC free article] [PubMed]
  • Bradley RS, Cowin P, Brown AM. Expression of Wnt-1 in PC12 cells results in modulation of plakoglobin and E-cadherin and increased cellular adhesion. J Cell Biol. 1993 Dec;123(6 Pt 2):1857–1865. [PMC free article] [PubMed]
  • Brändli AW, Adamson ED, Simons K. Transcytosis of epidermal growth factor. The epidermal growth factor receptor mediates uptake but not transcytosis. J Biol Chem. 1991 May 5;266(13):8560–8566. [PubMed]
  • Butz S, Stappert J, Weissig H, Kemler R. Plakoglobin and beta-catenin: distinct but closely related. Science. 1992 Aug 21;257(5073):1142–1144. [PubMed]
  • Cowin P, Kapprell HP, Franke WW, Tamkun J, Hynes RO. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell. 1986 Sep 26;46(7):1063–1073. [PubMed]
  • Herrenknecht K, Ozawa M, Eckerskorn C, Lottspeich F, Lenter M, Kemler R. The uvomorulin-anchorage protein alpha catenin is a vinculin homologue. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9156–9160. [PMC free article] [PubMed]
  • Hinck L, Näthke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol. 1994 Jun;125(6):1327–1340. [PMC free article] [PubMed]
  • Hinck L, Nelson WJ, Papkoff J. Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin. J Cell Biol. 1994 Mar;124(5):729–741. [PMC free article] [PubMed]
  • Hiraoka Y, Swedlow JR, Paddy MR, Agard DA, Sedat JW. Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena. Semin Cell Biol. 1991 Jun;2(3):153–165. [PubMed]
  • Kemler R. Classical cadherins. Semin Cell Biol. 1992 Jun;3(3):149–155. [PubMed]
  • Korman NJ, Eyre RW, Klaus-Kovtun V, Stanley JR. Demonstration of an adhering-junction molecule (plakoglobin) in the autoantigens of pemphigus foliaceus and pemphigus vulgaris. N Engl J Med. 1989 Sep 7;321(10):631–635. [PubMed]
  • Madara JL. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol. 1987 Jul;253(1 Pt 1):C171–C175. [PubMed]
  • Marrs JA, Napolitano EW, Murphy-Erdosh C, Mays RW, Reichardt LF, Nelson WJ. Distinguishing roles of the membrane-cytoskeleton and cadherin mediated cell-cell adhesion in generating different Na+,K(+)-ATPase distributions in polarized epithelia. J Cell Biol. 1993 Oct;123(1):149–164. [PMC free article] [PubMed]
  • Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol. 1992 Aug;118(3):703–714. [PMC free article] [PubMed]
  • McCrea PD, Turck CW, Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science. 1991 Nov 29;254(5036):1359–1361. [PubMed]
  • McNeill H, Ozawa M, Kemler R, Nelson WJ. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell. 1990 Jul 27;62(2):309–316. [PubMed]
  • McNeill H, Ryan TA, Smith SJ, Nelson WJ. Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J Cell Biol. 1993 Mar;120(5):1217–1226. [PMC free article] [PubMed]
  • Nagafuchi A, Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. [PMC free article] [PubMed]
  • Nagafuchi A, Takeichi M. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul. 1989 Nov;1(1):37–44. [PMC free article] [PubMed]
  • Nagafuchi A, Takeichi M, Tsukita S. The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell. 1991 May 31;65(5):849–857. [PubMed]
  • Nelson WJ. Regulation of cell surface polarity from bacteria to mammals. Science. 1992 Nov 6;258(5084):948–955. [PubMed]
  • Nelson WJ, Shore EM, Wang AZ, Hammerton RW. Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1990 Feb;110(2):349–357. [PMC free article] [PubMed]
  • Nusse R, Varmus HE. Wnt genes. Cell. 1992 Jun 26;69(7):1073–1087. [PubMed]
  • Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989 Jun;8(6):1711–1717. [PMC free article] [PubMed]
  • Ozawa M, Ringwald M, Kemler R. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4246–4250. [PMC free article] [PubMed]
  • Riggleman B, Schedl P, Wieschaus E. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell. 1990 Nov 2;63(3):549–560. [PubMed]
  • Rodriguez-Boulan E, Nelson WJ. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–725. [PubMed]
  • Rubinfeld B, Souza B, Albert I, Müller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P. Association of the APC gene product with beta-catenin. Science. 1993 Dec 10;262(5140):1731–1734. [PubMed]
  • Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science. 1993 Dec 10;262(5140):1734–1737. [PubMed]
  • Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991 Mar 22;251(5000):1451–1455. [PubMed]
  • Tsukita S, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Submembranous junctional plaque proteins include potential tumor suppressor molecules. J Cell Biol. 1993 Dec;123(5):1049–1053. [PMC free article] [PubMed]
  • Tsukita S, Oishi K, Akiyama T, Yamanashi Y, Yamamoto T, Tsukita S. Specific proto-oncogenic tyrosine kinases of src family are enriched in cell-to-cell adherens junctions where the level of tyrosine phosphorylation is elevated. J Cell Biol. 1991 May;113(4):867–879. [PMC free article] [PubMed]
  • Tsukita S, Tsukita S, Nagafuchi A, Yonemura S. Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. Curr Opin Cell Biol. 1992 Oct;4(5):834–839. [PubMed]
  • Wessells NK, Spooner BS, Ash JF, Bradley MO, Luduena MA, Taylor EL, Wrenn JT, Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. [PubMed]
  • Wollner DA, Krzeminski KA, Nelson WJ. Remodeling the cell surface distribution of membrane proteins during the development of epithelial cell polarity. J Cell Biol. 1992 Feb;116(4):889–899. [PMC free article] [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links