Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1991 Apr 1; 113(1): 147–154.
PMCID: PMC2288926

Heterogeneity of microvascular pericytes for smooth muscle type alpha- actin


Microvascular pericytes are believed to be involved in various functions such as regulation of capillary blood flow and endothelial proliferation. Since pericytes represent a morphologically heterogeneous cell population ranging from circular smooth musclelike to elongated fibroblast-like morphology it is possible that regulation of blood flow (via contractility) and control of endothelial proliferation (as well as other metabolic functions) may be accomplished by different subsets of pericytes. In the present study we provide evidence for heterogeneity of pericytes at the molecular level by using two novel technical approaches. These are (a) immunostaining of whole mounts of the microvascular beds of the rat mesentery and bovine retina and (b) immunoblotting studies of microdissected retinal microvessels. We show that pericytes of true capillaries (midcapillaries) apparently lack the smooth muscle isoform of alpha- actin whereas transitional pericytes of pre- and postcapillary microvascular segments do express this isoform. Thus, regulation of capillary blood flow may be accomplished by the smooth muscle-related pre- and postcapillary pericytes whereas the nonmuscle pericytes of true capillaries may play a role in other functions.

Full Text

The Full Text of this article is available as a PDF (3.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4544–4548. [PMC free article] [PubMed]
  • Drenckhahn D, Dermietzel R. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol. 1988 Sep;107(3):1037–1048. [PMC free article] [PubMed]
  • Drenckhahn D, Gröschel-Stewart U. Localization of myosin, actin, and tropomyosin in rat intestinal epithelium: immunohistochemical studies at the light and electron microscope levels. J Cell Biol. 1980 Aug;86(2):475–482. [PMC free article] [PubMed]
  • Drenckhahn D, Wagner J. Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility. J Cell Biol. 1986 May;102(5):1738–1747. [PMC free article] [PubMed]
  • Fujimoto T, Singer SJ. Immunocytochemical studies of desmin and vimentin in pericapillary cells of chicken. J Histochem Cytochem. 1987 Oct;35(10):1105–1115. [PubMed]
  • Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K. Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest. 1984 Jan;73(1):148–152. [PMC free article] [PubMed]
  • Herman IM, D'Amore PA. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 1985 Jul;101(1):43–52. [PMC free article] [PubMed]
  • Joyce NC, DeCamilli P, Boyles J. Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvasc Res. 1984 Sep;28(2):206–219. [PubMed]
  • Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. J Cell Biol. 1985 May;100(5):1379–1386. [PMC free article] [PubMed]
  • Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol. 1985 May;100(5):1387–1395. [PMC free article] [PubMed]
  • Kelley C, D'Amore P, Hechtman HB, Shepro D. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol. 1987 Mar;104(3):483–490. [PMC free article] [PubMed]
  • KUWABARA T, COGAN DG. Tetrazolium studies on the retina. I. Introduction and technique. J Histochem Cytochem. 1959 Sep;7:329–333. [PubMed]
  • KUWABARA T, COGAN DG. Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol. 1963 Apr;69:492–502. [PubMed]
  • Larson DM, Fujiwara K, Alexander RW, Gimbrone MA., Jr Heterogeneity of myosin antigenic expression in vascular smooth muscle in vivo. Lab Invest. 1984 Apr;50(4):401–407. [PubMed]
  • Meyrick B, Reid L. Pulmonary hypertension. Anatomic and physiologic correlates. Clin Chest Med. 1983 May;4(2):199–217. [PubMed]
  • Nakane PK. Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem. 1968 Sep;16(9):557–560. [PubMed]
  • Orlidge A, D'Amore PA. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol. 1987 Sep;105(3):1455–1462. [PMC free article] [PubMed]
  • Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol. 1986 Dec;103(6 Pt 2):2787–2796. [PMC free article] [PubMed]
  • Skalli O, Vandekerckhove J, Gabbiani G. Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues. Differentiation. 1987;33(3):232–238. [PubMed]
  • Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L. Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem. 1989 Mar;37(3):315–321. [PubMed]
  • Tilton RG, Kilo C, Williamson JR, Murch DW. Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc Res. 1979 Nov;18(3):336–352. [PubMed]
  • Tontsch U, Bauer HC. Isolation, characterization, and long-term cultivation of porcine and murine cerebral capillary endothelial cells. Microvasc Res. 1989 Mar;37(2):148–161. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...