• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcmPermissionsJournals.ASM.orgJournalJCM ArticleJournal InfoAuthorsReviewers
J Clin Microbiol. Jun 1995; 33(6): 1501–1509.
PMCID: PMC228204

Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing.


The genetic homogeneity of nine commensal and infecting populations of Candida albicans has been assessed by fingerprinting multiple isolates from each population by Southern blot hybridization first with the Ca3 probe and then with the 0.98-kb C1 fragment of the Ca3 probe. The isolates from each population were highly related, demonstrating the clonal origin of each population, but each population contained minor variants, demonstrating microevolution. Variation in each case was limited to bands of the Ca3 fingerprint pattern which hybridized with the 0.98-kb C1 fragment. The C1 fragment was therefore sequenced and demonstrated to contain an RPS repetitive element. The C1 fragment also contained part or all of a true end of the RPS element. These results, therefore, demonstrate that most colonizing C. albicans populations in nonimmuno-suppressed patients are clonal, that microevolution can be detected in every colonizing population by C1 hybridization, and that C1 contains the repeat RPS element.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anderson J, Srikantha T, Morrow B, Miyasaki SH, White TC, Agabian N, Schmid J, Soll DR. Characterization and partial nucleotide sequence of the DNA fingerprinting probe Ca3 of Candida albicans. J Clin Microbiol. 1993 Jun;31(6):1472–1480. [PMC free article] [PubMed]
  • Bedell GW, Soll DR. Effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and -sensitive pathways for mycelium formation. Infect Immun. 1979 Oct;26(1):348–354. [PMC free article] [PubMed]
  • Chibana H, Iwaguchi S, Homma M, Chindamporn A, Nakagawa Y, Tanaka K. Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of Candida albicans. J Bacteriol. 1994 Jul;176(13):3851–3858. [PMC free article] [PubMed]
  • Doi M, Mizuguchi I, Homma M, Tanaka K. Electrophoretic karyotypes of Candida yeasts recurrently isolated from single patients. Microbiol Immunol. 1994;38(1):19–23. [PubMed]
  • Hellstein J, Vawter-Hugart H, Fotos P, Schmid J, Soll DR. Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity. J Clin Microbiol. 1993 Dec;31(12):3190–3199. [PMC free article] [PubMed]
  • Iwaguchi S, Homma M, Chibana H, Tanaka K. Isolation and characterization of a repeated sequence (RPS1) of Candida albicans. J Gen Microbiol. 1992 Sep;138(9):1893–1900. [PubMed]
  • Lee KL, Buckley HR, Campbell CC. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. [PubMed]
  • McCullough MJ, Ross BC, Dwyer BD, Reade PC. Genotype and phenotype of oral Candida albicans from patients infected with the human immunodeficiency virus. Microbiology. 1994 May;140(Pt 5):1195–1202. [PubMed]
  • Merz WG, Connelly C, Hieter P. Variation of electrophoretic karyotypes among clinical isolates of Candida albicans. J Clin Microbiol. 1988 May;26(5):842–845. [PMC free article] [PubMed]
  • Redston MS, Kern SE. Klenow co-sequencing: a method for eliminating "stops". Biotechniques. 1994 Aug;17(2):286–288. [PubMed]
  • Sadhu C, McEachern MJ, Rustchenko-Bulgac EP, Schmid J, Soll DR, Hicks JB. Telomeric and dispersed repeat sequences in Candida yeasts and their use in strain identification. J Bacteriol. 1991 Jan;173(2):842–850. [PMC free article] [PubMed]
  • Scherer S, Stevens DA. Application of DNA typing methods to epidemiology and taxonomy of Candida species. J Clin Microbiol. 1987 Apr;25(4):675–679. [PMC free article] [PubMed]
  • Schmid J, Rotman M, Reed B, Pierson CL, Soll DR. Genetic similarity of Candida albicans strains from vaginitis patients and their partners. J Clin Microbiol. 1993 Jan;31(1):39–46. [PMC free article] [PubMed]
  • Schmid J, Voss E, Soll DR. Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J Clin Microbiol. 1990 Jun;28(6):1236–1243. [PMC free article] [PubMed]
  • Schröppel K, Rotman M, Galask R, Mac K, Soll DR. Evolution and replacement of Candida albicans strains during recurrent vaginitis demonstrated by DNA fingerprinting. J Clin Microbiol. 1994 Nov;32(11):2646–2654. [PMC free article] [PubMed]
  • Soll DR. High-frequency switching in Candida albicans. Clin Microbiol Rev. 1992 Apr;5(2):183–203. [PMC free article] [PubMed]
  • Soll DR, Galask R, Isley S, Rao TV, Stone D, Hicks J, Schmid J, Mac K, Hanna C. Switching of Candida albicans during successive episodes of recurrent vaginitis. J Clin Microbiol. 1989 Apr;27(4):681–690. [PMC free article] [PubMed]
  • Soll DR, Galask R, Schmid J, Hanna C, Mac K, Morrow B. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J Clin Microbiol. 1991 Aug;29(8):1702–1710. [PMC free article] [PubMed]
  • Soll DR, Langtimm CJ, McDowell J, Hicks J, Galask R. High-frequency switching in Candida strains isolated from vaginitis patients. J Clin Microbiol. 1987 Sep;25(9):1611–1622. [PMC free article] [PubMed]
  • Soll DR, Staebell M, Langtimm C, Pfaller M, Hicks J, Rao TV. Multiple Candida strains in the course of a single systemic infection. J Clin Microbiol. 1988 Aug;26(8):1448–1459. [PMC free article] [PubMed]
  • Sullivan D, Bennett D, Henman M, Harwood P, Flint S, Mulcahy F, Shanley D, Coleman D. Oligonucleotide fingerprinting of isolates of Candida species other than C. albicans and of atypical Candida species from human immunodeficiency virus-positive and AIDS patients. J Clin Microbiol. 1993 Aug;31(8):2124–2133. [PMC free article] [PubMed]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...