Logo of brcnresBioMed CentralBiomed Central Web Sitesearchsubmit a manuscriptregisterthis articleBreast Cancer Research : BCR
Breast Cancer Res. 2007; 9(6): 113.
Published online 2007 Nov 19. doi:  10.1186/bcr1784
PMCID: PMC2246167

Genes harbouring susceptibility SNPs are differentially expressed in the breast cancer subtypes


Recently, genome-wide association studies of breast cancer revealed single nucleotide polymorphisms (SNPs) in five genes with novel association to susceptibility. While there is little doubt that the novel susceptibility markers produced from such highly powered studies are true, the mechanisms by which they cause the susceptibility remain undetermined. We have looked at the expression levels of the identified genes in tumours and found that they are highly significantly differentially expressed between the five established breast cancer subtypes. Also, a significant association between SNPs in these genes and their expression in tumours was seen as well as a significantly different frequency of the SNPs between the subtypes. This suggests that the observed genes are associated with different breast cancer subtypes, and may exert their effect through their expression in the tumours. Thus, future studies stratifying patients by their molecular subtypes may give much more power to classic case control studies, and genes of no or borderline significance may appear to be high-penetrant for certain subtypes and, therefore, be identifiable.

A genome-wide association study of breast cancer has revealed single nucleotide polymorphisms (SNPs) in five genes with novel association to susceptibility: TNRC9, FGFR2, MAP3K1, H19 and LSP1 [1]. The results were confirmed for FGFR2 and TNRC9 in two independent studies [2,3]. However, these studies revealed little of the mechanisms underlying these associations. Pooling of such a large amount of cases, as performed in these studies, inevitably leads to concealment of the various histological and clinico-pathological subtypes. This suggests that the observed genes are either of universal importance for breast cancer development, are associated with a subgroup that dominates the overall pool or are associated with any subgroup but with an association sufficiently strong to dominate the overall result. Breast cancer patients can be divided into five distinct molecular subtypes based on their expression profiles [4]. The existence of these five subtypes, luminal A, luminal B, basal-like, ErbB2+, and normal-like, have been confirmed in independent datasets [5] and they are associated with different clinical outcomes [6]. If the probability to develop a given subtype of breast cancer is genetically determined, we might expect to find that the newly discovered susceptibility genes [1] are differentially expressed in the various tumour subtypes, and that their transcription is regulated in cis by SNPs within them. With this in mind, we retrieved the mRNA expression data of TNRC9, FGFR2, MAP3K1, H19 and LSP1 from 112 breast tumours representing all five subtypes [7]. Significantly different mRNA levels between the subtypes were found for all the five genes by ANOVA analysis (Table (Table1).1). For instance, TNRC9 was up-regulated in luminal A, luminal B and ErbB2+subtypes and down-regulated in the basal-like subtype (p = 4.5 × 10-7). FGFR2 was up-regulated in luminal A and basal-like subtypes and down-regulated in luminal B and ErbB2+ subtypes (p = 3.1 × 10-5), while MAP3K1 was up-regulated in luminal A and the normal-like subtypes and down-regulated in luminal B, ErbB2+ and basal-like subtypes (p = 5.2 × 10-5). Furthermore, we could calculate the association between SNPs residing within these genes and their tumour expression levels since genotype data on these patients have been generated using an Illumina 109K SNP array. The three genes whose expression levels were most significantly associated with tumour subtype (TNRC9, FGFR2 and MAP3K1) all harboured SNPs within them displaying a significant association with gene expression level (Table (Table1).1). One of these SNPs, rs9940048 in TNRC9, displayed a significantly different genotype distribution between the subtypes, with breast cancer patients homozygous for the low frequency allele over-represented in the basal-like subtype (p = 0.003), in concordance with the observation that the basal-like tumours had the lowest levels of TNRC9 mRNA.

Table 1
P values after ANOVA analyses


Our results suggest that SNPs in the recently discovered susceptibility genes may exert their effect through the expression of their genes in tumours, giving rise to the various breast cancer subtypes. Thus, stratification of patients by their molecular subtypes may give much more power to classic case control studies, and genes of no or borderline significance may appear to be high-penetrant for certain subtypes and, therefore, be identifiable.


SNP = single nucleotide polymorphism.

Competing interests

The authors declare that they have no competing interests.


  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447:1087–1093. doi: 10.1038/nature05887. [PMC free article] [PubMed] [Cross Ref]
  • Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39:870–874. doi: 10.1038/ng2075. [PMC free article] [PubMed] [Cross Ref]
  • Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA, Masson G, Jakobsdottir M, Thorlacius S, Helgason A, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2007. [PubMed]
  • Perou CM, Sorlie T, Eisen MB, van de RM, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093. [PubMed] [Cross Ref]
  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–8423. doi: 10.1073/pnas.0932692100. [PMC free article] [PubMed] [Cross Ref]
  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de RM, Jeffrey SS, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. [PMC free article] [PubMed] [Cross Ref]
  • Naume B, Zhao X, Synnestvedt M, Borgen E, Russnes HG, Lingjaerde OC, Stromberg M, Wiedswang G, Kvalheim G, Karesen R, et al. Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol. 2007;1:160–171. doi: 10.1016/j.molonc.2007.03.004. [PubMed] [Cross Ref]

Articles from Breast Cancer Research : BCR are provided here courtesy of BioMed Central
PubReader format: click here to try


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

  • Genetic Variation in Cell Cycle Regulatory Gene AURKA and Association With Intrinsic Breast Cancer Subtype[Molecular carcinogenesis. ]
    Taylor NJ, Bensen JT, Poole C, Troester MA, Gammon MD, Luo J, Millikan RC, Olshan AF. Molecular carcinogenesis.10.1002/mc.22238
  • TOX3 is expressed in mammary ER+ epithelial cells and regulates ER target genes in luminal breast cancer[BMC Cancer. ]
    Seksenyan A, Kadavallore A, Walts AE, de la Torre B, Berel D, Strom SP, Aliahmad P, Funari VA, Kaye J. BMC Cancer. 1522
  • Genetic variation in estrogen and progesterone pathway genes and breast cancer risk: an exploration of tumor subtype-specific effects[Cancer causes & control : CCC. 2015]
    Nyante SJ, Gammon MD, Kaufman JS, Bensen JT, Lin DY, Barnholtz-Sloan JS, Hu Y, He Q, Luo J, Millikan RC. Cancer causes & control : CCC. 2015 Jan; 26(1)121-131
  • Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1[American Journal of Human Genetics. 2015]
    Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, Carlebur S, O’Reilly M, Betts JA, Hillman KM, Kaufmann S, Beesley J, Canisius S, Hopper JL, Southey MC, Tsimiklis H, Apicella C, Schmidt MK, Broeks A, Hogervorst FB, van der Schoot CE, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Fasching PA, Ruebner M, Ekici AB, Beckmann MW, Peto J, dos-Santos-Silva I, Fletcher O, Johnson N, Pharoah PD, Bolla MK, Wang Q, Dennis J, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Burwinkel B, Marme F, Yang R, Surowy H, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, González-Neira A, Benitez J, Zamora MP, Arias Perez JI, Anton-Culver H, Neuhausen SL, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Meindl A, Schmutzler RK, Brauch H, Ko YD, Brüning T, The GENICA Network, Nevanlinna H, Muranen TA, Aittomäki K, Blomqvist C, Matsuo K, Ito H, Iwata H, Tanaka H, Dörk T, Bogdanova NV, Helbig S, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, kConFab Investigators, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Lambrechts D, Zhao H, Weltens C, van Limbergen E, Chang-Claude J, Flesch-Janys D, Rudolph A, Seibold P, Radice P, Peterlongo P, Barile M, Capra F, Couch FJ, Olson JE, Hallberg E, Vachon C, Giles GG, Milne RL, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Teo SH, Yip CH, See MH, Cornes B, Cheng CY, Ikram MK, Kristensen V, Norwegian Breast Cancer Study, Zheng W, Halverson SL, Shrubsole M, Long J, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Kauppila S, Andrulis IL, Knight JA, Glendon G, Tchatchou S, Devilee P, Tollenaar RA, Seynaeve C, Van Asperen CJ, García-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Klevebring D, Darabi H, Eriksson M, Hooning MJ, Hollestelle A, Martens JW, Collée JM, Hall P, Li J, Humphreys K, Shu XO, Lu W, Gao YT, Cai H, Cox A, Cross SS, Reed MW, Blot W, Signorello LB, Cai Q, Shah M, Ghoussaini M, Kang D, Choi JY, Park SK, Noh DY, Hartman M, Miao H, Lim WY, Tang A, Hamann U, Torres D, Jakubowska A, Lubinski J, Jaworska K, Durda K, Sangrajrang S, Gaborieau V, Brennan P, McKay J, Olswold C, Slager S, Toland AE, Yannoukakos D, Shen CY, Wu PE, Yu JC, Hou MF, Swerdlow A, Ashworth A, Orr N, Jones M, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Luccarini C, Baynes C, Ahmed S, Healey CS, Brown MA, Ponder BA, Chenevix-Trench G, Thompson DJ, Edwards SL, Easton DF, Dunning AM, French JD. American Journal of Human Genetics. 2015 Jan 8; 96(1)5-20
  • CYP19 Genetic Polymorphism Haplotype AASA Is Associated with a Poor Prognosis in Premenopausal Women with Lymph Node-Negative, Hormone Receptor-Positive Breast Cancer[BioMed Research International. 2013]
    Kuo SH, Yang SY, Lien HC, Lo C, Lin CH, Lu YS, Cheng AL, Chang KJ, Huang CS. BioMed Research International. 2013; 2013562197
See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence and PMC links.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles
  • SNP
    Nucleotide polymorphism records from dbSNP that have current articles as submitter-provided references.
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...