Logo of jgenphysiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Gen Physiol. Nov 1, 1987; 90(5): 625–650.
PMCID: PMC2228878

"Imposed" and "inherent" mucosal activity patterns. Their composite representation of olfactory stimuli

Abstract

Both regional differences in mucosal sensitivity and a gas chromatography-like process along the mucosal sheet have been separately proposed in two sets of earlier studies to produce different odorant-dependent activity patterns across the olfactory mucosa. This investigation evaluated, in one study, whether and to what degree these two mechanisms contribute to the generation of these activity patterns. Summated multiunit discharges were simultaneously recorded from lateral (LN) and medial (MN) sites on the bullfrog's olfactory nerve to sample the mucosal activity occurring near the internal and external nares, respectively. Precisely controlled sniffs of four odorants (benzaldehyde, butanol, geraniol, and octane) were drawn through the frog's olfactory sac in both the forward (H1) and reverse (H2) hale directions. By combining the four resulting measurements, LNH1, LNH2, MNH1, and MNH2, in different mathematical expressions, indexes reflecting the relative effects of the chromatographic process, regional sensitivity, and hale direction could be calculated. Most importantly, the chromatographic process and the regional sensitivity differences both contributed significantly to the mucosal activity patterns. However, their relative roles varied markedly among the four odorants, ranging from complete dominance by either one to substantial contributions from each. In general, the more strongly an odorant was sorbed by the mucosa, the greater was the relative effect of the chromatographic process; the weaker the sorption, the greater the relative effect of regional sensitivity. Similarly, the greater an odorant's sorption, the greater was the effect of hale direction. Other stimulus variables (sniff volume, sniff duration, and the number of molecules within the sniff) had marked effects upon the overall size of the response. For strongly sorbed odorants, the effect of increasing volume was positive; for a weakly sorbed odorant, it was negative. The reverse may be true for duration. In contrast, the effect of increasing the number of molecules was uniformly positive for all four odorants. However, there was little evidence that these other stimulus variables had a major influence upon the effects of the chromatographic process and regional sensitivity differences in their generation of mucosal activity patterns.

Full Text

The Full Text of this article is available as a PDF (1.5M).

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...