• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. Feb 2, 1996; 132(4): 617–633.
PMCID: PMC2199864

Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis

Abstract

Dynactin is a multi-subunit complex which has been implicated in cytoplasmic dynein function, though its mechanism of action is unknown. In this study, we have characterized the 50-kD subunit of dynactin, and analyzed the effects of its overexpression on mitosis in living cells. Rat and human cDNA clones revealed p50 to be novel and highly conserved, containing three predicted coiled-coil domains. Immunofluorescence staining of dynactin and cytoplasmic dynein components in cultured vertebrate cells showed that both complexes are recruited to kinetochores during prometaphase, and concentrate near spindle poles thereafter. Overexpression of p50 in COS-7 cells disrupted mitosis, causing cells to accumulate in a prometaphase-like state. Chromosomes were condensed but unaligned, and spindles, while still bipolar, were dramatically distorted. Sedimentation analysis revealed the dynactin complex to be dissociated in the transfected cultures. Furthermore, both dynactin and cytoplasmic dynein staining at prometaphase kinetochores was markedly diminished in cells expressing high levels of p50. These findings represent clear evidence for dynactin and cytoplasmic dynein codistribution within cells, and for the presence of dynactin at kinetochores. The data also provide direct in vivo evidence for a role for vertebrate dynactin in modulating cytoplasmic dynein binding to an organelle, and implicate both dynactin and dynein in chromosome alignment and spindle organization.

Full Text

The Full Text of this article is available as a PDF (8.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet. 1993 Aug;4(4):373–380. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Aniento F, Emans N, Griffiths G, Gruenberg J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol. 1993 Dec;123(6 Pt 1):1373–1387. [PMC free article] [PubMed]
  • Bernat RL, Borisy GG, Rothfield NF, Earnshaw WC. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J Cell Biol. 1990 Oct;111(4):1519–1533. [PMC free article] [PubMed]
  • Bernat RL, Delannoy MR, Rothfield NF, Earnshaw WC. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell. 1991 Sep 20;66(6):1229–1238. [PubMed]
  • Clark SW, Meyer DI. Centractin is an actin homologue associated with the centrosome. Nature. 1992 Sep 17;359(6392):246–250. [PubMed]
  • Clark SW, Meyer DI. ACT3: a putative centractin homologue in S. cerevisiae is required for proper orientation of the mitotic spindle. J Cell Biol. 1994 Oct;127(1):129–138. [PMC free article] [PubMed]
  • Clark SW, Staub O, Clark IB, Holzbaur EL, Paschal BM, Vallee RB, Meyer DI. Beta-centractin: characterization and distribution of a new member of the centractin family of actin-related proteins. Mol Biol Cell. 1994 Dec;5(12):1301–1310. [PMC free article] [PubMed]
  • Collins CA, Vallee RB. Preparation of microtubules from rat liver and testis: cytoplasmic dynein is a major microtubule associated protein. Cell Motil Cytoskeleton. 1989;14(4):491–500. [PubMed]
  • Corthésy-Theulaz I, Pauloin A, Pfeffer SR. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol. 1992 Sep;118(6):1333–1345. [PMC free article] [PubMed]
  • Desai A, Mitchison TJ. A new role for motor proteins as couplers to depolymerizing microtubules. J Cell Biol. 1995 Jan;128(1-2):1–4. [PMC free article] [PubMed]
  • Dillman JF, 3rd, Pfister KK. Differential phosphorylation in vivo of cytoplasmic dynein associated with anterogradely moving organelles. J Cell Biol. 1994 Dec;127(6 Pt 1):1671–1681. [PMC free article] [PubMed]
  • Eshel D, Urrestarazu LA, Vissers S, Jauniaux JC, van Vliet-Reedijk JC, Planta RJ, Gibbons IR. Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11172–11176. [PMC free article] [PubMed]
  • Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. [PMC free article] [PubMed]
  • Fath KR, Trimbur GM, Burgess DR. Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells. J Cell Biol. 1994 Aug;126(3):661–675. [PMC free article] [PubMed]
  • Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol. 1991 Dec;115(6):1639–1650. [PMC free article] [PubMed]
  • Gorbsky GJ, Sammak PJ, Borisy GG. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. [PMC free article] [PubMed]
  • Harte PJ, Kankel DR. Genetic analysis of mutations at the Glued locus and interacting loci in Drosophila melanogaster. Genetics. 1982 Jul-Aug;101(3-4):477–501. [PMC free article] [PubMed]
  • Hayden JH, Bowser SS, Rieder CL. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol. 1990 Sep;111(3):1039–1045. [PMC free article] [PubMed]
  • Henikoff S, Henikoff JG. Protein family classification based on searching a database of blocks. Genomics. 1994 Jan 1;19(1):97–107. [PubMed]
  • Holzbaur EL, Hammarback JA, Paschal BM, Kravit NG, Pfister KK, Vallee RB. Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Nature. 1991 Jun 13;351(6327):579–583. [PubMed]
  • Holzbaur EL, Vallee RB. DYNEINS: molecular structure and cellular function. Annu Rev Cell Biol. 1994;10:339–372. [PubMed]
  • Hyman AA, Mitchison TJ. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature. 1991 May 16;351(6323):206–211. [PubMed]
  • Jacobs KA, Rudersdorf R, Neill SD, Dougherty JP, Brown EL, Fritsch EF. The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones. Nucleic Acids Res. 1988 May 25;16(10):4637–4650. [PMC free article] [PubMed]
  • Karki S, Holzbaur EL. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J Biol Chem. 1995 Dec 1;270(48):28806–28811. [PubMed]
  • King SM, Witman GB. Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. J Biol Chem. 1990 Nov 15;265(32):19807–19811. [PubMed]
  • Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. [PMC free article] [PubMed]
  • Lacey ML, Haimo LT. Cytoplasmic dynein is a vesicle protein. J Biol Chem. 1992 Mar 5;267(7):4793–4798. [PubMed]
  • Lees-Miller JP, Helfman DM, Schroer TA. A vertebrate actin-related protein is a component of a multisubunit complex involved in microtubule-based vesicle motility. Nature. 1992 Sep 17;359(6392):244–246. [PubMed]
  • Li YY, Yeh E, Hays T, Bloom K. Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10096–10100. [PMC free article] [PubMed]
  • Lin SX, Collins CA. Immunolocalization of cytoplasmic dynein to lysosomes in cultured cells. J Cell Sci. 1992 Jan;101(Pt 1):125–137. [PubMed]
  • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PMC free article] [PubMed]
  • Lombillo VA, Nislow C, Yen TJ, Gelfand VI, McIntosh JR. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J Cell Biol. 1995 Jan;128(1-2):107–115. [PMC free article] [PubMed]
  • Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. [PubMed]
  • McGrail M, Gepner J, Silvanovich A, Ludmann S, Serr M, Hays TS. Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex. J Cell Biol. 1995 Oct;131(2):411–425. [PMC free article] [PubMed]
  • McMillan JN, Tatchell K. The JNM1 gene in the yeast Saccharomyces cerevisiae is required for nuclear migration and spindle orientation during the mitotic cell cycle. J Cell Biol. 1994 Apr;125(1):143–158. [PMC free article] [PubMed]
  • Melloni RH, Jr, Tokito MK, Holzbaur EL. Expression of the p150Glued component of the dynactin complex in developing and adult rat brain. J Comp Neurol. 1995 Jun 19;357(1):15–24. [PubMed]
  • Mitchison TJ, Kirschner MW. Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J Cell Biol. 1985 Sep;101(3):755–765. [PMC free article] [PubMed]
  • Mitchison T, Evans L, Schulze E, Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. [PubMed]
  • Muhua L, Karpova TS, Cooper JA. A yeast actin-related protein homologous to that in vertebrate dynactin complex is important for spindle orientation and nuclear migration. Cell. 1994 Aug 26;78(4):669–679. [PubMed]
  • Nicklas RB, Kubai DF. Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation. Chromosoma. 1985;92(4):313–324. [PubMed]
  • Paschal BM, Vallee RB. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. [PubMed]
  • Paschal BM, Mikami A, Pfister KK, Vallee RB. Homology of the 74-kD cytoplasmic dynein subunit with a flagellar dynein polypeptide suggests an intracellular targeting function. J Cell Biol. 1992 Sep;118(5):1133–1143. [PMC free article] [PubMed]
  • Paschal BM, Holzbaur EL, Pfister KK, Clark S, Meyer DI, Vallee RB. Characterization of a 50-kDa polypeptide in cytoplasmic dynein preparations reveals a complex with p150GLUED and a novel actin. J Biol Chem. 1993 Jul 15;268(20):15318–15323. [PubMed]
  • Pfarr CM, Coue M, Grissom PM, Hays TS, Porter ME, McIntosh JR. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature. 1990 May 17;345(6272):263–265. [PubMed]
  • Pierre P, Scheel J, Rickard JE, Kreis TE. CLIP-170 links endocytic vesicles to microtubules. Cell. 1992 Sep 18;70(6):887–900. [PubMed]
  • Plamann M, Minke PF, Tinsley JH, Bruno KS. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol. 1994 Oct;127(1):139–149. [PMC free article] [PubMed]
  • Rieder CL. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. [PubMed]
  • Rieder CL, Alexander SP. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol. 1990 Jan;110(1):81–95. [PMC free article] [PubMed]
  • Rieder CL, Salmon ED. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol. 1994 Feb;124(3):223–233. [PMC free article] [PubMed]
  • Saunders WS, Koshland D, Eshel D, Gibbons IR, Hoyt MA. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J Cell Biol. 1995 Feb;128(4):617–624. [PMC free article] [PubMed]
  • Schafer DA, Gill SR, Cooper JA, Heuser JE, Schroer TA. Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin. J Cell Biol. 1994 Jul;126(2):403–412. [PMC free article] [PubMed]
  • Schnapp BJ, Reese TS. Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1548–1552. [PMC free article] [PubMed]
  • Schroer TA, Sheetz MP. Two activators of microtubule-based vesicle transport. J Cell Biol. 1991 Dec;115(5):1309–1318. [PMC free article] [PubMed]
  • Schroer TA, Steuer ER, Sheetz MP. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. [PubMed]
  • Simerly C, Balczon R, Brinkley BR, Schatten G. Microinjected centromere [corrected] kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol. 1990 Oct;111(4):1491–1504. [PMC free article] [PubMed]
  • Skibbens RV, Skeen VP, Salmon ED. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol. 1993 Aug;122(4):859–875. [PMC free article] [PubMed]
  • Spurck TP, Stonington OG, Snyder JA, Pickett-Heaps JD, Bajer A, Mole-Bajer J. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production. J Cell Biol. 1990 Oct;111(4):1505–1518. [PMC free article] [PubMed]
  • Steuer ER, Wordeman L, Schroer TA, Sheetz MP. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature. 1990 May 17;345(6272):266–268. [PubMed]
  • Vaisberg EA, Koonce MP, McIntosh JR. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J Cell Biol. 1993 Nov;123(4):849–858. [PMC free article] [PubMed]
  • Vaughan KT, Vallee RB. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J Cell Biol. 1995 Dec;131(6 Pt 1):1507–1516. [PMC free article] [PubMed]
  • Waterman-Storer CM, Karki S, Holzbaur EL. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1634–1638. [PMC free article] [PubMed]
  • Xiang X, Beckwith SM, Morris NR. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2100–2104. [PMC free article] [PubMed]
  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 1991 May;10(5):1245–1254. [PMC free article] [PubMed]
  • Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature. 1992 Oct 8;359(6395):536–539. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...