Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Exp Med. 1994 Feb 1; 179(2): 651–660.
PMCID: PMC2191384

The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L- arginine


MRL-lpr/lpr mice spontaneously develop various manifestations of autoimmunity including an inflammatory arthropathy and immune complex glomerulonephritis. This study examines the role of nitric oxide, a molecule with proinflammatory actions, in the pathogenesis of MRL- lpr/lpr autoimmune disease. MRL-lpr/lpr mice excreted more urinary nitrite/nitrate (an in vivo marker of nitric oxide production) than did mice of normal strains and MRL-(+/+) and B6-lpr/lpr congenic strains. In addition, MRL-lpr/lpr peritoneal macrophages had an enhanced capacity to produce nitric oxide in vitro as well as increased nitric oxide synthase activity, and certain tissues from MRL-lpr/lpr mice had increased expression of inducible nitric oxide synthase (NOS) mRNA and increased amounts of material immunoreactive for inducible NOS. Oral administration of NG-monomethyl-L-arginine, a nitric oxide synthase inhibitor, prevented the development of glomerulonephritis and reduced the intensity of inflammatory arthritis in MRL-lpr/lpr mice. By using interspecific backcross mice, the gene for inducible NOS (Nosi) was mapped to mouse chromosome 11. This chromosomal localization was different from those loci that we have previously demonstrated to be linked to enhanced susceptibility to renal disease in an MRL-lpr/lpr cross. However, the chromosomal location of the NOS gene was consistent with an insulin-dependent diabetes locus identified in an analysis of nonobese diabetic (NOD) mice. These results suggest that elevated nitric oxide production could be important in the pathogenesis of autoimmunity, and that treatments to block the production of nitric oxide or block its effects might be valuable therapeutically.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Cohen PL, Eisenberg RA. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9:243–269. [PubMed]
  • Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978 Nov 1;148(5):1198–1215. [PMC free article] [PubMed]
  • Lu CY, Unanue ER. Spontaneous T-cell lymphokine production and enhanced macrophage Ia expression and tumoricidal activity in MRL-lpr mice. Clin Immunol Immunopathol. 1982 Nov;25(2):213–222. [PubMed]
  • Murray LJ, Lee R, Martens C. In vivo cytokine gene expression in T cell subsets of the autoimmune MRL/Mp-lpr/lpr mouse. Eur J Immunol. 1990 Jan;20(1):163–170. [PubMed]
  • Manolios N, Schrieber L, Nelson M, Geczy CL. Enhanced interferon-gamma (IFN) production by lymph node cells from autoimmune (MRL/1, MRL/n) mice. Clin Exp Immunol. 1989 May;76(2):301–306. [PMC free article] [PubMed]
  • Boswell JM, Yui MA, Burt DW, Kelley VE. Increased tumor necrosis factor and IL-1 beta gene expression in the kidneys of mice with lupus nephritis. J Immunol. 1988 Nov 1;141(9):3050–3054. [PubMed]
  • Dang-Vu AP, Pisetsky DS, Weinberg JB. Functional alterations of macrophages in autoimmune MRL-lpr/lpr mice. J Immunol. 1987 Mar 15;138(6):1757–1761. [PubMed]
  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992 Mar 26;356(6367):314–317. [PubMed]
  • Watson ML, Rao JK, Gilkeson GS, Ruiz P, Eicher EM, Pisetsky DS, Matsuzawa A, Rochelle JM, Seldin MF. Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J Exp Med. 1992 Dec 1;176(6):1645–1656. [PMC free article] [PubMed]
  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed]
  • Nathan CF, Hibbs JB., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. [PubMed]
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed]
  • Lander HM, Sehajpal P, Levine DM, Novogrodsky A. Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J Immunol. 1993 Feb 15;150(4):1509–1516. [PubMed]
  • Magrinat G, Mason SN, Shami PJ, Weinberg JB. Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood. 1992 Oct 15;80(8):1880–1884. [PubMed]
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. [PMC free article] [PubMed]
  • Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992 Nov 1;298(2):446–451. [PubMed]
  • Zhu L, Gunn C, Beckman JS. Bactericidal activity of peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):452–457. [PubMed]
  • Mayhan WG. Role of nitric oxide in modulating permeability of hamster cheek pouch in response to adenosine 5'-diphosphate and bradykinin. Inflammation. 1992 Aug;16(4):295–305. [PubMed]
  • Stadler J, Stefanovic-Racic M, Billiar TR, Curran RD, McIntyre LA, Georgescu HI, Simmons RL, Evans CH. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol. 1991 Dec 1;147(11):3915–3920. [PubMed]
  • Palmer RM, Hickery MS, Charles IG, Moncada S, Bayliss MT. Induction of nitric oxide synthase in human chondrocytes. Biochem Biophys Res Commun. 1993 May 28;193(1):398–405. [PubMed]
  • Farrell AJ, Blake DR, Palmer RM, Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992 Nov;51(11):1219–1222. [PMC free article] [PubMed]
  • McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med. 1993 Aug 1;178(2):749–754. [PMC free article] [PubMed]
  • Granger DL, Hibbs JB, Jr, Broadnax LM. Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NG-monomethyl-L-arginine. J Immunol. 1991 Feb 15;146(4):1294–1302. [PubMed]
  • Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9030–9033. [PMC free article] [PubMed]
  • Sherman PA, Laubach VE, Reep BR, Wood ER. Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line. Biochemistry. 1993 Nov 2;32(43):11600–11605. [PubMed]
  • Weinberg JB, Pippen AM, Greenberg CS. Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 1991 Aug;34(8):996–1005. [PubMed]
  • Wood ER, Berger H, Jr, Sherman PA, Lapetina EG. Hepatocytes and macrophages express an identical cytokine inducible nitric oxide synthase gene. Biochem Biophys Res Commun. 1993 Mar 31;191(3):767–774. [PubMed]
  • Seldin MF, Morse HC, 3rd, Reeves JP, Scribner CL, LeBoeuf RC, Steinberg AD. Genetic analysis of autoimmune gld mice. I. Identification of a restriction fragment length polymorphism closely linked to the gld mutation within a conserved linkage group. J Exp Med. 1988 Feb 1;167(2):688–693. [PMC free article] [PubMed]
  • Lyons CR, Orloff GJ, Cunningham JM. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed]
  • Vennström B, Bishop JM. Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus. Cell. 1982 Jan;28(1):135–143. [PubMed]
  • Jenkins JR, Rudge K, Redmond S, Wade-Evans A. Cloning and expression analysis of full length mouse cDNA sequences encoding the transformation associated protein p53. Nucleic Acids Res. 1984 Jul 25;12(14):5609–5626. [PMC free article] [PubMed]
  • Bishop DT. The information content of phase-known matings for ordering genetic loci. Genet Epidemiol. 1985;2(4):349–361. [PubMed]
  • Gilkeson GS, Grudier JP, Karounos DG, Pisetsky DS. Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA. J Immunol. 1989 Mar 1;142(5):1482–1486. [PubMed]
  • Gilkeson GS, Ruiz P, Grudier JP, Kurlander RJ, Pisetsky DS. Genetic control of inflammatory arthritis in congenic lpr mice. Clin Immunol Immunopathol. 1989 Dec;53(3):460–474. [PubMed]
  • Gilkeson GS, Spurney R, Coffman TM, Kurlander R, Ruiz P, Pisetsky DS. Effect of anti-CD4 antibody treatment on inflammatory arthritis in MRL-lpr/lpr mice. Clin Immunol Immunopathol. 1992 Aug;64(2):166–172. [PubMed]
  • Watson ML, D'Eustachio P, Mock BA, Steinberg AD, Morse HC, 3rd, Oakey RJ, Howard TA, Rochelle JM, Seldin MF. A linkage map of mouse chromosome 1 using an interspecific cross segregating for the gld autoimmunity mutation. Mamm Genome. 1992;2(3):158–171. [PubMed]
  • Saunders AM, Seldin MF. A molecular genetic linkage map of mouse chromosome 7. Genomics. 1990 Nov;8(3):525–535. [PubMed]
  • Oakey RJ, Caron MG, Lefkowitz RJ, Seldin MF. Genomic organization of adrenergic and serotonin receptors in the mouse: linkage mapping of sequence-related genes provides a method for examining mammalian chromosome evolution. Genomics. 1991 Jun;10(2):338–344. [PubMed]
  • Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990 Dec 21;250(4988):1684–1689. [PubMed]
  • Wilson SD, Billings PR, D'Eustachio P, Fournier RE, Geissler E, Lalley PA, Burd PR, Housman DE, Taylor BA, Dorf ME. Clustering of cytokine genes on mouse chromosome 11. J Exp Med. 1990 Apr 1;171(4):1301–1314. [PMC free article] [PubMed]
  • Irving SG, Zipfel PF, Balke J, McBride OW, Morton CC, Burd PR, Siebenlist U, Kelly K. Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q. Nucleic Acids Res. 1990 Jun 11;18(11):3261–3270. [PMC free article] [PubMed]
  • Kishimoto J, Spurr N, Liao M, Lizhi L, Emson P, Xu W. Localization of brain nitric oxide synthase (NOS) to human chromosome 12. Genomics. 1992 Nov;14(3):802–804. [PubMed]
  • Mulligan MS, Warren JS, Smith CW, Anderson DC, Yeh CG, Rudolph AR, Ward PA. Lung injury after deposition of IgA immune complexes. Requirements for CD18 and L-arginine. J Immunol. 1992 May 15;148(10):3086–3092. [PubMed]
  • Mulligan MS, Hevel JM, Marletta MA, Ward PA. Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6338–6342. [PMC free article] [PubMed]
  • Garchon HJ, Bedossa P, Eloy L, Bach JF. Identification and mapping to chromosome 1 of a susceptibility locus for periinsulitis in non-obese diabetic mice. Nature. 1991 Sep 19;353(6341):260–262. [PubMed]
  • Cornall RJ, Prins JB, Todd JA, Pressey A, DeLarato NH, Wicker LS, Peterson LB. Type 1 diabetes in mice is linked to the interleukin-1 receptor and Lsh/Ity/Bcg genes on chromosome 1. Nature. 1991 Sep 19;353(6341):262–265. [PubMed]
  • Kolb H, Kolb-Bachofen V. Type 1 (insulin-dependent) diabetes mellitus and nitric oxide. Diabetologia. 1992 Aug;35(8):796–797. [PubMed]
  • Leiter EH, Prochazka M, Coleman DL. The non-obese diabetic (NOD) mouse. Am J Pathol. 1987 Aug;128(2):380–383. [PMC free article] [PubMed]
  • Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993 May 7;73(3):469–485. [PubMed]
  • Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, Hearne CM, Knight AM, Love JM, McAleer MA, Prins JB, et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature. 1991 Jun 13;351(6327):542–547. [PubMed]
  • Weinberg JB, Misukonis MA. Phorbol diester-induced H2O2 production by peritoneal macrophages. Different H2O2 production by macrophages from normal and BCG-infected mice despite comparable phorbol diester receptors. Cell Immunol. 1983 Sep;80(2):405–415. [PubMed]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

  • The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune di...
    The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L- arginine
    The Journal of Experimental Medicine. 1994 Feb 1; 179(2)651

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...