Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Exp Med. Dec 1, 1990; 172(6): 1869–1872.
PMCID: PMC2188759

The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin 2 promoter

Abstract

Cyclosporin A (CSA), FK506, and glucocorticosteroids all inhibit the production of lymphokines by decreasing lymphokine gene expression. Previous experiments have defined six different sites that may contribute to the transcriptional control of the interleukin 2 (IL-2) promoter, and for each, active nuclear binding factors are induced upon mitogenic stimulation. While dexamethasone markedly blocks the increase in IL-2 mRNA in stimulated human blood T cells, we found that the drug does not block the appearance of factors that bind to the transcriptional control sites termed AP-1, AP-3, NF-kB, OCT-1, B site, and NF-AT. In contrast, both CSA and FK506 have similar effects: the drugs cause modest decreases in AP-3 and NF-kB, and markedly decreases in the activity of AP-1 and NF-AT. Therefore, CSA and FK506, while chemically different, seem to act upon a similar pathway that leads to IL-2 gene expression, whereas glucocorticoids do not affect this pathway.

Full Text

The Full Text of this article is available as a PDF (705K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Granelli-Piperno A, Inaba K, Steinman RM. Stimulation of lymphokine release from T lymphoblasts. Requirement for mRNA synthesis and inhibition by cyclosporin A. J Exp Med. 1984 Dec 1;160(6):1792–1802. [PMC free article] [PubMed]
  • Granelli-Piperno A, Andrus L, Steinman RM. Lymphokine and nonlymphokine mRNA levels in stimulated human T cells. Kinetics, mitogen requirements, and effects of cyclosporin A. J Exp Med. 1986 Apr 1;163(4):922–937. [PMC free article] [PubMed]
  • Krönke M, Leonard WJ, Depper JM, Arya SK, Wong-Staal F, Gallo RC, Waldmann TA, Greene WC. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5214–5218. [PMC free article] [PubMed]
  • Elliott JF, Lin Y, Mizel SB, Bleackley RC, Harnish DG, Paetkau V. Induction of interleukin 2 messenger RNA inhibited by cyclosporin A. Science. 1984 Dec 21;226(4681):1439–1441. [PubMed]
  • Tocci MJ, Matkovich DA, Collier KA, Kwok P, Dumont F, Lin S, Degudicibus S, Siekierka JJ, Chin J, Hutchinson NI. The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J Immunol. 1989 Jul 15;143(2):718–726. [PubMed]
  • Arya SK, Wong-Staal F, Gallo RC. Dexamethasone-mediated inhibition of human T cell growth factor and gamma-interferon messenger RNA. J Immunol. 1984 Jul;133(1):273–276. [PubMed]
  • Vacca A, Martinotti S, Screpanti I, Maroder M, Felli MP, Farina AR, Gismondi A, Santoni A, Frati L, Gulino A. Transcriptional regulation of the interleukin 2 gene by glucocorticoid hormones. Role of steroid receptor and antigen-responsive 5'-flanking sequences. J Biol Chem. 1990 May 15;265(14):8075–8080. [PubMed]
  • Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science. 1989 Jan 20;243(4889):355–361. [PubMed]
  • Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science. 1988 Jul 8;241(4862):202–205. [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Holbrook NJ, Lieber M, Crabtree GR. DNA sequence of the 5' flanking region of the human interleukin 2 gene: homologies with adult T-cell leukemia virus. Nucleic Acids Res. 1984 Jun 25;12(12):5005–5013. [PMC free article] [PubMed]
  • Chiu R, Imagawa M, Imbra RJ, Bockoven JR, Karin M. Multiple cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature. 1987 Oct 15;329(6140):648–651. [PubMed]
  • Nabel GJ, Gorka C, Baltimore D. T-cell-specific expression of interleukin 2: evidence for a negative regulatory site. Proc Natl Acad Sci U S A. 1988 May;85(9):2934–2938. [PMC free article] [PubMed]
  • Emmel EA, Verweij CL, Durand DB, Higgins KM, Lacy E, Crabtree GR. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science. 1989 Dec 22;246(4937):1617–1620. [PubMed]
  • June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol. 1987 Dec;7(12):4472–4481. [PMC free article] [PubMed]
  • Granelli-Piperno A. In situ hybridization for interleukin 2 and interleukin 2 receptor mRNA in T cells activated in the presence or absence of cyclosporin A. J Exp Med. 1988 Nov 1;168(5):1649–1658. [PMC free article] [PubMed]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...