• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Sep 29, 1998; 95(20): 11514–11519.
Applied Mathematics, Medical Sciences

Drug concentration heterogeneity facilitates the evolution of drug resistance


Pathogenic microorganisms use Darwinian processes to circumvent attempts at their control through chemotherapy. In the case of HIV-1 infection, in which drug resistance is a continuing problem, we show that in one-compartment systems, there is a relatively narrow window of drug concentrations that allows evolution of resistant variants. When the system is enlarged to two spatially distinct compartments held at different drug concentrations with transport of virus between them, the range of average drug concentrations that allow evolution of resistance is significantly increased. For high average drug concentrations, resistance is very unlikely to arise without spatial heterogeneity. We argue that a quantitative understanding of the role played by heterogeneity in drug levels and pathogen transport is crucial for attempts to control re-emergent infectious disease.

Keywords: sanctuary sites/HIV

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...