• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of prosciprotein sciencecshl presssubscriptionsetoc alertsthe protein societyjournal home
Protein Sci. Sep 2000; 9(9): 1838–1846.
PMCID: PMC2144704

Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles.

Abstract

Specific binding of antigenic peptides to major histocompatibility complex (MHC) class I molecules is a prerequisite for their recognition by cytotoxic T-cells. Prediction of MHC-binding peptides must therefore be incorporated in any predictive algorithm attempting to identify immunodominant T-cell epitopes, based on the amino acid sequence of the protein antigen. Development of predictive algorithms based on experimental binding data requires experimental testing of a very large number of peptides. A complementary approach relies on the structural conservation observed in crystallographically solved peptide-MHC complexes. By this approach, the peptide structure in the MHC groove is used as a template upon which peptide candidates are threaded, and their compatibility to bind is evaluated by statistical pairwise potentials. Our original algorithm based on this approach used the pairwise potential table of Miyazawa and Jernigan (Miyazawa S, Jernigan RL, 1996, J Mol Biol 256:623-644) and succeeded to correctly identify good binders only for MHC molecules with hydrophobic binding pockets, probably because of the high emphasis of hydrophobic interactions in this table. A recently developed pairwise potential table by Betancourt and Thirumalai (Betancourt MR, Thirumalai D, 1999, Protein Sci 8:361-369) that is based on the Miyazawa and Jernigan table describes the hydrophilic interactions more appropriately. In this paper, we demonstrate how the use of this table, together with a new definition of MHC contact residues by which only residues that contribute exclusively to sequence specific binding are included, allows the development of an improved algorithm that can be applied to a wide range of MHC class I alleles.

Full Text

The Full Text of this article is available as a PDF (250K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Achour A, Persson K, Harris RA, Sundbäck J, Sentman CL, Lindqvist Y, Schneider G, Kärre K. The crystal structure of H-2Dd MHC class I complexed with the HIV-1-derived peptide P18-I10 at 2.4 A resolution: implications for T cell and NK cell recognition. Immunity. 1998 Aug;9(2):199–208. [PubMed]
  • Altuvia Y, Schueler O, Margalit H. Ranking potential binding peptides to MHC molecules by a computational threading approach. J Mol Biol. 1995 Jun 2;249(2):244–250. [PubMed]
  • Altuvia Y, Sette A, Sidney J, Southwood S, Margalit H. A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Hum Immunol. 1997 Nov;58(1):1–11. [PubMed]
  • Balendiran GK, Solheim JC, Young AC, Hansen TH, Nathenson SG, Sacchettini JC. The three-dimensional structure of an H-2Ld-peptide complex explains the unique interaction of Ld with beta-2 microglobulin and peptide. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6880–6885. [PMC free article] [PubMed]
  • Betancourt MR, Thirumalai D. Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci. 1999 Feb;8(2):361–369. [PMC free article] [PubMed]
  • Chen Y, Sidney J, Southwood S, Cox AL, Sakaguchi K, Henderson RA, Appella E, Hunt DF, Sette A, Engelhard VH. Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. J Immunol. 1994 Mar 15;152(6):2874–2881. [PubMed]
  • Collins EJ, Garboczi DN, Karpusas MN, Wiley DC. The three-dimensional structure of a class I major histocompatibility complex molecule missing the alpha 3 domain of the heavy chain. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1218–1221. [PMC free article] [PubMed]
  • Corr M, Boyd LF, Padlan EA, Margulies DH. H-2Dd exploits a four residue peptide binding motif. J Exp Med. 1993 Dec 1;178(6):1877–1892. [PMC free article] [PubMed]
  • Ding YH, Smith KJ, Garboczi DN, Utz U, Biddison WE, Wiley DC. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity. 1998 Apr;8(4):403–411. [PubMed]
  • Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science. 1992 Aug 14;257(5072):919–927. [PubMed]
  • Fremont DH, Stura EA, Matsumura M, Peterson PA, Wilson IA. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2479–2483. [PMC free article] [PubMed]
  • Gao GF, Tormo J, Gerth UC, Wyer JR, McMichael AJ, Stuart DI, Bell JI, Jones EY, Jakobsen BK. Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature. 1997 Jun 5;387(6633):630–634. [PubMed]
  • Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature. 1996 Nov 14;384(6605):134–141. [PubMed]
  • Garcia KC, Degano M, Pease LR, Huang M, Peterson PA, Teyton L, Wilson IA. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science. 1998 Feb 20;279(5354):1166–1172. [PubMed]
  • Ghendler Y, Teng MK, Liu JH, Witte T, Liu J, Kim KS, Kern P, Chang HC, Wang JH, Reinherz EL. Differential thymic selection outcomes stimulated by focal structural alteration in peptide/major histocompatibility complex ligands. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10061–10066. [PMC free article] [PubMed]
  • Glithero A, Tormo J, Haurum JS, Arsequell G, Valencia G, Edwards J, Springer S, Townsend A, Pao YL, Wormald M, et al. Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. Immunity. 1999 Jan;10(1):63–74. [PubMed]
  • Gulukota K, Sidney J, Sette A, DeLisi C. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J Mol Biol. 1997 Apr 18;267(5):1258–1267. [PubMed]
  • Huang ES, Subbiah S, Levitt M. Recognizing native folds by the arrangement of hydrophobic and polar residues. J Mol Biol. 1995 Oct 6;252(5):709–720. [PubMed]
  • Jernigan RL, Bahar I. Structure-derived potentials and protein simulations. Curr Opin Struct Biol. 1996 Apr;6(2):195–209. [PubMed]
  • Jones DT, Thornton JM. Potential energy functions for threading. Curr Opin Struct Biol. 1996 Apr;6(2):210–216. [PubMed]
  • Kern PS, Teng MK, Smolyar A, Liu JH, Liu J, Hussey RE, Spoerl R, Chang HC, Reinherz EL, Wang JH. Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8alphaalpha ectodomain fragment in complex with H-2Kb. Immunity. 1998 Oct;9(4):519–530. [PubMed]
  • Keskin O, Bahar I, Badretdinov AY, Ptitsyn OB, Jernigan RL. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions. Protein Sci. 1998 Dec;7(12):2578–2586. [PMC free article] [PubMed]
  • Kondo A, Sidney J, Southwood S, del Guercio MF, Appella E, Sakamoto H, Celis E, Grey HM, Chesnut RW, Kubo RT, et al. Prominent roles of secondary anchor residues in peptide binding to HLA-A24 human class I molecules. J Immunol. 1995 Nov 1;155(9):4307–4312. [PubMed]
  • Kondo A, Sidney J, Southwood S, del Guercio MF, Appella E, Sakamoto H, Grey HM, Celis E, Chesnut RW, Kubo RT, et al. Two distinct HLA-A*0101-specific submotifs illustrate alternative peptide binding modes. Immunogenetics. 1997;45(4):249–258. [PubMed]
  • Madden DR, Garboczi DN, Wiley DC. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell. 1993 Nov 19;75(4):693–708. [PubMed]
  • Madden DR, Gorga JC, Strominger JL, Wiley DC. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell. 1992 Sep 18;70(6):1035–1048. [PubMed]
  • Menssen R, Orth P, Ziegler A, Saenger W. Decamer-like conformation of a nona-peptide bound to HLA-B*3501 due to non-standard positioning of the C terminus. J Mol Biol. 1999 Jan 15;285(2):645–653. [PubMed]
  • Miyazawa S, Jernigan RL. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996 Mar 1;256(3):623–644. [PubMed]
  • Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994 Jan 1;152(1):163–175. [PubMed]
  • Rammensee HG, Friede T, Stevanoviíc S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228. [PubMed]
  • Reid SW, McAdam S, Smith KJ, Klenerman P, O'Callaghan CA, Harlos K, Jakobsen BK, McMichael AJ, Bell JI, Stuart DI, et al. Antagonist HIV-1 Gag peptides induce structural changes in HLA B8. J Exp Med. 1996 Dec 1;184(6):2279–2286. [PMC free article] [PubMed]
  • Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, Oseroff C, Grey HM, Melief CJ, Kast WM. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol. 1995 Jun 1;154(11):5934–5943. [PubMed]
  • Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell. 1993 Sep 10;74(5):929–937. [PubMed]
  • Schueler-Furman O, Elber R, Margalit H. Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes. Fold Des. 1998;3(6):549–564. [PubMed]
  • Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, Colon SM, Grey HM. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci U S A. 1989 May;86(9):3296–3300. [PMC free article] [PubMed]
  • Sette A, Sidney J, del Guercio MF, Southwood S, Ruppert J, Dahlberg C, Grey HM, Kubo RT. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol Immunol. 1994 Aug;31(11):813–822. [PubMed]
  • Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, Melief CJ, Oseroff C, Yuan L, Ruppert J, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol. 1994 Dec 15;153(12):5586–5592. [PubMed]
  • Sidney J, Grey HM, Southwood S, Celis E, Wentworth PA, del Guercio MF, Kubo RT, Chesnut RW, Sette A. Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. Hum Immunol. 1996 Feb;45(2):79–93. [PubMed]
  • Sidney J, Southwood S, del Guercio MF, Grey HM, Chesnut RW, Kubo RT, Sette A. Specificity and degeneracy in peptide binding to HLA-B7-like class I molecules. J Immunol. 1996 Oct 15;157(8):3480–3490. [PubMed]
  • Silver ML, Guo HC, Strominger JL, Wiley DC. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature. 1992 Nov 26;360(6402):367–369. [PubMed]
  • Skolnick J, Jaroszewski L, Kolinski A, Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci. 1997 Mar;6(3):676–688. [PMC free article] [PubMed]
  • Smith KJ, Reid SW, Harlos K, McMichael AJ, Stuart DI, Bell JI, Jones EY. Bound water structure and polymorphic amino acids act together to allow the binding of different peptides to MHC class I HLA-B53. Immunity. 1996 Mar;4(3):215–228. [PubMed]
  • Smith KJ, Reid SW, Stuart DI, McMichael AJ, Jones EY, Bell JI. An altered position of the alpha 2 helix of MHC class I is revealed by the crystal structure of HLA-B*3501. Immunity. 1996 Mar;4(3):203–213. [PubMed]
  • Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol. 1998 Apr 1;160(7):3363–3373. [PubMed]
  • Speir JA, Garcia KC, Brunmark A, Degano M, Peterson PA, Teyton L, Wilson IA. Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity. 1998 May;8(5):553–562. [PubMed]
  • Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol. 1999 Jun;17(6):555–561. [PubMed]
  • Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988 Jun 3;240(4857):1285–1293. [PubMed]
  • Thomas PD, Dill KA. Statistical potentials extracted from protein structures: how accurate are they? J Mol Biol. 1996 Mar 29;257(2):457–469. [PubMed]
  • Young AC, Zhang W, Sacchettini JC, Nathenson SG. The three-dimensional structure of H-2Db at 2.4 A resolution: implications for antigen-determinant selection. Cell. 1994 Jan 14;76(1):39–50. [PubMed]
  • Zhao R, Loftus DJ, Appella E, Collins EJ. Structural evidence of T cell xeno-reactivity in the absence of molecular mimicry. J Exp Med. 1999 Jan 18;189(2):359–370. [PMC free article] [PubMed]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...