• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of prosciprotein sciencecshl presssubscriptionsetoc alertsthe protein societyjournal home
Protein Sci. Oct 1996; 5(10): 1984–1990.
PMCID: PMC2143266

The 1.8-A X-ray structure of the Escherichia coli PotD protein complexed with spermidine and the mechanism of polyamine binding.


The PotD protein from Escherichia coli is one of the components of the polyamine transport system present in the periplasm. This component specifically binds either spermidine or putrescine. The crystal structure of the E. coli PotD protein complexed with spermidine was solved at 1.8 A resolution and revealed the detailed substrate-binding mechanism. The structure provided the detailed conformation of the bound spermidine. Furthermore, a water molecule was clearly identified in the binding site lying between the amino-terminal domain and carboxyl-terminal domain. Through this water molecule, the bound spermidine molecule forms two hydrogen bonds with Thr 35 and Ser 211. Another periplasmic component of polyamine transport, the PotF protein, exhibits 35% sequence identity with the PotD protein, and it binds only putrescine, not spermidine. To understand these different substrate specificities, model building of the PotF protein was performed on the basis of the PotD crystal structure. The hypothetical structure suggests that the side chain of Lys 349 in PotF inhibits spermidine binding because of the repulsive forces between its positive charge and spermidine. On the other hand, putrescine could be accommodated into the binding site without any steric hindrance because its molecular size is much smaller than that of spermidine, and the positively charged amino group is relatively distant from Lys 349.

Full Text

The Full Text of this article is available as a PDF (9.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ames GF. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem. 1986;55:397–425. [PubMed]
  • Furuchi T, Kashiwagi K, Kobayashi H, Igarashi K. Characteristics of the gene for a spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome. J Biol Chem. 1991 Nov 5;266(31):20928–20933. [PubMed]
  • Hendrickson WA. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. [PubMed]
  • Kang CH, Shin WC, Yamagata Y, Gokcen S, Ames GF, Kim SH. Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J Biol Chem. 1991 Dec 15;266(35):23893–23899. [PubMed]
  • Kashiwagi K, Hosokawa N, Furuchi T, Kobayashi H, Sasakawa C, Yoshikawa M, Igarashi K. Isolation of polyamine transport-deficient mutants of Escherichia coli and cloning of the genes for polyamine transport proteins. J Biol Chem. 1990 Dec 5;265(34):20893–20897. [PubMed]
  • Kashiwagi K, Miyamoto S, Nukui E, Kobayashi H, Igarashi K. Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli. J Biol Chem. 1993 Sep 15;268(26):19358–19363. [PubMed]
  • Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4529–4533. [PMC free article] [PubMed]
  • Kashiwagi K, Pistocchi R, Shibuya S, Sugiyama S, Morikawa K, Igarashi K. Spermidine-preferential uptake system in Escherichia coli. Identification of amino acids involved in polyamine binding in PotD protein. J Biol Chem. 1996 May 24;271(21):12205–12208. [PubMed]
  • Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H, Igarashi K. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem. 1991 Nov 5;266(31):20922–20927. [PubMed]
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. [PubMed]
  • Oh BH, Pandit J, Kang CH, Nikaido K, Gokcen S, Ames GF, Kim SH. Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem. 1993 May 25;268(15):11348–11355. [PubMed]
  • Pegg AE. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed]
  • Pflugrath JW, Quiocho FA. The 2 A resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium. J Mol Biol. 1988 Mar 5;200(1):163–180. [PubMed]
  • Pistocchi R, Kashiwagi K, Miyamoto S, Nukui E, Sadakata Y, Kobayashi H, Igarashi K. Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. J Biol Chem. 1993 Jan 5;268(1):146–152. [PubMed]
  • Quiocho FA, Vyas NK. Novel stereospecificity of the L-arabinose-binding protein. Nature. 1984 Aug 2;310(5976):381–386. [PubMed]
  • Sack JS, Saper MA, Quiocho FA. Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol. 1989 Mar 5;206(1):171–191. [PubMed]
  • Sack JS, Trakhanov SD, Tsigannik IH, Quiocho FA. Structure of the L-leucine-binding protein refined at 2.4 A resolution and comparison with the Leu/Ile/Val-binding protein structure. J Mol Biol. 1989 Mar 5;206(1):193–207. [PubMed]
  • Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry. 1992 Nov 10;31(44):10657–10663. [PubMed]
  • Spurlino JC, Lu GY, Quiocho FA. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem. 1991 Mar 15;266(8):5202–5219. [PubMed]
  • Sugiyama S, Matsushima M, Saisho T, Kashiwagi K, Igarashi K, Morikawa K. Crystallization and preliminary X-ray analysis of the primary receptor (PotD) of the polyamine transport system in Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1996 Mar 1;52(Pt 2):416–418. [PubMed]
  • Sugiyama S, Vassylyev DG, Matsushima M, Kashiwagi K, Igarashi K, Morikawa K. Crystal structure of PotD, the primary receptor of the polyamine transport system in Escherichia coli. J Biol Chem. 1996 Apr 19;271(16):9519–9525. [PubMed]
  • Tabor CW, Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. [PubMed]
  • Vyas NK, Vyas MN, Quiocho FA. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science. 1988 Dec 2;242(4883):1290–1295. [PubMed]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...