• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Nov 1985; 164(2): 816–822.
PMCID: PMC214324

Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli.


We have isolated insertion and deletion mutants in glnB, the structural gene of PII, a member of the adenylylation system for glutamine synthetase of Escherichia coli, to study the role of PII in the regulation of the synthesis of glutamine synthetase and of histidase in response to nitrogen deprivation or excess. We have studied the effects of this mutation alone and combined with null mutations resulting from the insertion of transposons or from a deletion in the other genes affecting this regulation, glnD, glnF (ntrA), glnG (ntrC), and glnL (ntrB). Our results confirm that only the products of glnF and glnG are essential for this regulation. In cells of the wild type, the response is mediated by the products of glnD and glnB via the product of glnL. In the condition of nitrogen excess, PII, the product of glnB, appears to convert the product of glnL to a form that prevents the activation of transcription of the structural genes for glutamine synthetase and for histidase by the products of glnF and glnG. During nitrogen deprivation, uridylyltransferase, the product of glnD, is activated by the intracellular excess of 2-ketoglutarate over glutamine and converts PII to PII-UMP and changes the form of the glnL product to one that stimulates the activation of transcription of glutamine synthetase and histidase by the products of glnF and glnG.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bachmann BJ. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. [PMC free article] [PubMed]
  • Backman K, Chen YM, Magasanik B. Physical and genetic characterization of the glnA--glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3743–3747. [PMC free article] [PubMed]
  • Bancroft S, Rhee SG, Neumann C, Kustu S. Mutations that alter the covalent modification of glutamine synthetase in Salmonella typhimurium. J Bacteriol. 1978 Jun;134(3):1046–1055. [PMC free article] [PubMed]
  • Berg DE, Davies J, Allet B, Rochaix JD. Transposition of R factor genes to bacteriophage lambda. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3628–3632. [PMC free article] [PubMed]
  • Bloom FR, Levin MS, Foor F, Tyler B. Regulation of glutamine synthetase formation in Escherichia coli: characterization of mutants lacking the uridylyltransferase. J Bacteriol. 1978 May;134(2):569–577. [PMC free article] [PubMed]
  • Brown MS, Segal A, Stadtman ER. Modulation of glutamine synthetase adenylylation and deadenylylation is mediated by metabolic transformation of the P II -regulatory protein. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2949–2953. [PMC free article] [PubMed]
  • Casadaban MJ, Cohen SN. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. [PMC free article] [PubMed]
  • Chen YM, Backman K, Magasanik B. Characterization of a gene, glnL, the product of which is involved in the regulation of nitrogen utilization in Escherichia coli. J Bacteriol. 1982 Apr;150(1):214–220. [PMC free article] [PubMed]
  • Foor F, Cedergren RJ, Streicher SL, Rhee SG, Magasanik B. Glutamine synthetase of Klebsiella aerogenes: properties of glnD mutants lacking uridylyltransferase. J Bacteriol. 1978 May;134(2):562–568. [PMC free article] [PubMed]
  • Foor F, Reuveny Z, Magasanik B. Regulation of the synthesis of glutamine synthetase by the PII protein in Klebsiella aerogenes. Proc Natl Acad Sci U S A. 1980 May;77(5):2636–2640. [PMC free article] [PubMed]
  • MacNeil T, Roberts GP, MacNeil D, Tyler B. The products of glnL and glnG are bifunctional regulatory proteins. Mol Gen Genet. 1982;188(2):325–333. [PubMed]
  • Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982;16:135–168. [PubMed]
  • Merrick MJ. Nitrogen control of the nif regulon in Klebsiella pneumoniae: involvement of the ntrA gene and analogies between ntrC and nifA. EMBO J. 1983;2(1):39–44. [PMC free article] [PubMed]
  • Pahel G, Rothstein DM, Magasanik B. Complex glnA-glnL-glnG operon of Escherichia coli. J Bacteriol. 1982 Apr;150(1):202–213. [PMC free article] [PubMed]
  • Pahel G, Tyler B. A new glnA-linked regulatory gene for glutamine synthetase in Escherichia coli. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4544–4548. [PMC free article] [PubMed]
  • Pahel G, Zelenetz AD, Tyler BM. gltB gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli. J Bacteriol. 1978 Jan;133(1):139–148. [PMC free article] [PubMed]
  • Prival MJ, Brenchley JE, Magasanik B. Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J Biol Chem. 1973 Jun 25;248(12):4334–4344. [PubMed]
  • Reitzer LJ, Magasanik B. Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1979–1983. [PMC free article] [PubMed]
  • Reuveny Z, Foor F, Magasanik B. Regulation of glutamine synthetase by regulatory protein PII in Klebsiella aerogenes mutants lacking adenylyltransferase. J Bacteriol. 1981 May;146(2):740–745. [PMC free article] [PubMed]
  • Rothstein DM, Pahel G, Tyler B, Magasanik B. Regulation of expression from the glnA promoter of Escherichia coli in the absence of glutamine synthetase. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7372–7376. [PMC free article] [PubMed]
  • Ueno-Nishio S, Backman KC, Magasanik B. Regulation at the glnL-operator-promoter of the complex glnALG operon of Escherichia coli. J Bacteriol. 1983 Mar;153(3):1247–1251. [PMC free article] [PubMed]
  • Ueno-Nishio S, Mango S, Reitzer LJ, Magasanik B. Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli. J Bacteriol. 1984 Oct;160(1):379–384. [PMC free article] [PubMed]
  • Wanner BL, Wieder S, McSharry R. Use of bacteriophage transposon Mu d1 to determine the orientation for three proC-linked phosphate-starvation-inducible (psi) genes in Escherichia coli K-12. J Bacteriol. 1981 Apr;146(1):93–101. [PMC free article] [PubMed]
  • Winans SC, Elledge SJ, Krueger JH, Walker GC. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...