• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of prosciprotein sciencecshl presssubscriptionsetoc alertsthe protein societyjournal home
Protein Sci. Jun 1995; 4(6): 1081–1087.
PMCID: PMC2143140

Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase.


The three-dimensional X-ray structure of a complex of the potent neuraminidase inhibitor 4-guanidino-Neu5Ac2en and influenza virus neuraminidase (Subtype N9) has been obtained utilizing diffraction data to 1.8 A resolution. The interactions of the inhibitor, solvent water molecules, and the active site residues have been accurately determined. Six water molecules bound in the native structure have been displaced by the inhibitor, and the active site residues show no significant conformational changes on binding. Sialic acid, the natural substrate, binds in a half-chair conformation that is isosteric to the inhibitor. The conformation of the inhibitor in the active site of the X-ray structure concurs with that obtained by theoretical calculations and validates the structure-based design of the inhibitor. Comparison of known high-resolution structures of neuraminidase subtypes N2, N9, and B shows good structural conservation of the active site protein atoms, but the location of the water molecules in the respective active sites is less conserved. In particular, the environment of the 4-guanidino group of the inhibitor is strongly conserved and is the basis for the antiviral action of the inhibitor across all presently known influenza strains. Differences in the solvent structure in the active site may be related to variation in the affinities of inhibitors to different subtypes of neuraminidase.

Full Text

The Full Text of this article is available as a PDF (7.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bossart-Whitaker P, Carson M, Babu YS, Smith CD, Laver WG, Air GM. Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. J Mol Biol. 1993 Aug 20;232(4):1069–1083. [PubMed]
  • Burmeister WP, Ruigrok RW, Cusack S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992 Jan;11(1):49–56. [PMC free article] [PubMed]
  • Colman PM, Laver WG, Varghese JN, Baker AT, Tulloch PA, Air GM, Webster RG. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. Nature. 326(6111):358–363. [PubMed]
  • Colman PM, Tulip WR, Varghese JN, Tulloch PA, Baker AT, Laver WG, Air GM, Webster RG. Three-dimensional structures of influenza virus neuraminidase-antibody complexes. Philos Trans R Soc Lond B Biol Sci. 1989 Jun 12;323(1217):511–518. [PubMed]
  • Crennell S, Garman E, Laver G, Vimr E, Taylor G. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure. 1994 Jun 15;2(6):535–544. [PubMed]
  • Jones TA, Zou JY, Cowan SW, Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. [PubMed]
  • Laver WG, Colman PM, Webster RG, Hinshaw VS, Air GM. Influenza virus neuraminidase with hemagglutinin activity. Virology. 1984 Sep;137(2):314–323. [PubMed]
  • Pegg MS, von Itzstein M. Slow-binding inhibition of sialidase from influenza virus. Biochem Mol Biol Int. 1994 Apr;32(5):851–858. [PubMed]
  • Stewart JJ. MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des. 1990 Mar;4(1):1–105. [PubMed]
  • Tulip WR, Varghese JN, Baker AT, van Donkelaar A, Laver WG, Webster RG, Colman PM. Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. J Mol Biol. 1991 Sep 20;221(2):487–497. [PubMed]
  • Varghese JN, Colman PM. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J Mol Biol. 1991 Sep 20;221(2):473–486. [PubMed]
  • Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature. 1983 May 5;303(5912):35–40. [PubMed]
  • Varghese JN, McKimm-Breschkin JL, Caldwell JB, Kortt AA, Colman PM. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins. 1992 Nov;14(3):327–332. [PubMed]
  • Varghese JN, Webster RG, Laver WG, Colman PM. Structure of an escape mutant of glycoprotein N2 neuraminidase of influenza virus A/Tokyo/3/67 at 3 A. J Mol Biol. 1988 Mar 5;200(1):201–203. [PubMed]
  • von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993 Jun 3;363(6428):418–423. [PubMed]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Structure
    Published 3D structures
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...