• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of prosciprotein sciencecshl presssubscriptionsetoc alertsthe protein societyjournal home
Protein Sci. Mar 1995; 4(3): 337–360.
PMCID: PMC2143081

Structural basis of substrate specificity in the serine proteases.


Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system.

Full Text

The Full Text of this article is available as a PDF (21M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abrahmsén L, Tom J, Burnier J, Butcher KA, Kossiakoff A, Wells JA. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry. 1991 Apr 30;30(17):4151–4159. [PubMed]
  • Bash PA, Singh UC, Langridge R, Kollman PA. Free energy calculations by computer simulation. Science. 1987 May 1;236(4801):564–568. [PubMed]
  • Bauer CA. Active centers of Streptomyces griseus protease 1, Streptomyces griseus protease 3, and alpha-chymotrypsin: enzyme-substrate interactions. Biochemistry. 1978 Jan 24;17(2):375–380. [PubMed]
  • Bauer CA, Brayer GD, Sielecki AR, James MN. Active site of alpha-lytic protease: enzyme-substrate interactions. Eur J Biochem. 1981 Nov;120(2):289–294. [PubMed]
  • Bauer CA, Thompson RC, Blout ER. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin: enzyme-substrate interactions remote from the scissile bond. Biochemistry. 1976 Mar 23;15(6):1291–1295. [PubMed]
  • Bech LM, Sørensen SB, Breddam K. Mutational replacements in subtilisin 309. Val104 has a modulating effect on the P4 substrate preference. Eur J Biochem. 1992 Nov 1;209(3):869–874. [PubMed]
  • Bech LM, Sørensen SB, Breddam K. Significance of hydrophobic S4-P4 interactions in subtilisin 309 from Bacillus lentus. Biochemistry. 1993 Mar 23;32(11):2845–2852. [PubMed]
  • Bender ML, Killheffer JV. Chymotrypsins. CRC Crit Rev Biochem. 1973 Apr;1(2):149–199. [PubMed]
  • Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution. J Mol Biol. 1992 Jan 20;223(2):427–445. [PubMed]
  • Betzel C, Pal GP, Saenger W. Three-dimensional structure of proteinase K at 0.15-nm resolution. Eur J Biochem. 1988 Dec 1;178(1):155–171. [PubMed]
  • Betzel C, Singh TP, Visanji M, Peters K, Fittkau S, Saenger W, Wilson KS. Structure of the complex of proteinase K with a substrate analogue hexapeptide inhibitor at 2.2-A resolution. J Biol Chem. 1993 Jul 25;268(21):15854–15858. [PubMed]
  • Blow DM, Birktoft JJ, Hartley BS. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature. 1969 Jan 25;221(5178):337–340. [PubMed]
  • Bode W, Chen Z, Bartels K, Kutzbach C, Schmidt-Kastner G, Bartunik H. Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. J Mol Biol. 1983 Feb 25;164(2):237–282. [PubMed]
  • Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. [PMC free article] [PubMed]
  • Bode W, Meyer E, Jr, Powers JC. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry. 1989 Mar 7;28(5):1951–1963. [PubMed]
  • Bode W, Walter J, Huber R, Wenzel HR, Tschesche H. The refined 2.2-A (0.22-nm) X-ray crystal structure of the ternary complex formed by bovine trypsinogen, valine-valine and the Arg15 analogue of bovine pancreatic trypsin inhibitor. Eur J Biochem. 1984 Oct 1;144(1):185–190. [PubMed]
  • Bone R, Agard DA. Mutational remodeling of enzyme specificity. Methods Enzymol. 1991;202:643–671. [PubMed]
  • Bone R, Frank D, Kettner CA, Agard DA. Structural analysis of specificity: alpha-lytic protease complexes with analogues of reaction intermediates. Biochemistry. 1989 Sep 19;28(19):7600–7609. [PubMed]
  • Bone R, Fujishige A, Kettner CA, Agard DA. Structural basis for broad specificity in alpha-lytic protease mutants. Biochemistry. 1991 Oct 29;30(43):10388–10398. [PubMed]
  • Bone R, Shenvi AB, Kettner CA, Agard DA. Serine protease mechanism: structure of an inhibitory complex of alpha-lytic protease and a tightly bound peptide boronic acid. Biochemistry. 1987 Dec 1;26(24):7609–7614. [PubMed]
  • Bone R, Silen JL, Agard DA. Structural plasticity broadens the specificity of an engineered protease. Nature. 1989 May 18;339(6221):191–195. [PubMed]
  • Brenner C, Fuller RS. Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):922–926. [PMC free article] [PubMed]
  • Bryan P, Pantoliano MW, Quill SG, Hsiao HY, Poulos T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3743–3745. [PMC free article] [PubMed]
  • Caldwell JW, Agard DA, Kollman PA. Free energy calculations on binding and catalysis by alpha-lytic protease: the role of substrate size in the P1 pocket. Proteins. 1991;10(2):140–148. [PubMed]
  • Caputo A, James MN, Powers JC, Hudig D, Bleackley RC. Conversion of the substrate specificity of mouse proteinase granzyme B. Nat Struct Biol. 1994 Jun;1(6):364–367. [PubMed]
  • Carter P, Abrahmsén L, Wells JA. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'. Biochemistry. 1991 Jun 25;30(25):6142–6148. [PubMed]
  • Carter P, Nilsson B, Burnier JP, Burdick D, Wells JA. Engineering subtilisin BPN' for site-specific proteolysis. Proteins. 1989;6(3):240–248. [PubMed]
  • Carter P, Wells JA. Engineering enzyme specificity by "substrate-assisted catalysis". Science. 1987 Jul 24;237(4813):394–399. [PubMed]
  • Carter P, Wells JA. Dissecting the catalytic triad of a serine protease. Nature. 1988 Apr 7;332(6164):564–568. [PubMed]
  • Carter P, Wells JA. Functional interaction among catalytic residues in subtilisin BPN'. Proteins. 1990;7(4):335–342. [PubMed]
  • Chasan R, Anderson KV. The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell. 1989 Feb 10;56(3):391–400. [PubMed]
  • Corey DR, Shiau AK, Yang Q, Janowski BA, Craik CS. Trypsin display on the surface of bacteriophage. Gene. 1993 Jun 15;128(1):129–134. [PubMed]
  • Craik CS, Largman C, Fletcher T, Roczniak S, Barr PJ, Fletterick R, Rutter WJ. Redesigning trypsin: alteration of substrate specificity. Science. 1985 Apr 19;228(4697):291–297. [PubMed]
  • Craik CS, Roczniak S, Largman C, Rutter WJ. The catalytic role of the active site aspartic acid in serine proteases. Science. 1987 Aug 21;237(4817):909–913. [PubMed]
  • Creemers JW, Siezen RJ, Roebroek AJ, Ayoubi TA, Huylebroeck D, Van de Ven WJ. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem. 1993 Oct 15;268(29):21826–21834. [PubMed]
  • Dancer SJ, Garratt R, Saldanha J, Jhoti H, Evans R. The epidermolytic toxins are serine proteases. FEBS Lett. 1990 Jul 30;268(1):129–132. [PubMed]
  • Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. [PubMed]
  • Delbaere LT, Brayer GD, James MN. The 2.8 A resolution structure of Streptomyces griseus protease B and its homology with alpha-chymotrypsin and Streptomyces griseus protease A. Can J Biochem. 1979 Feb;57(2):135–144. [PubMed]
  • DIXON GH, GO S, NEURATH H. Peptides combined with 14C-diisopropyl phosphoryl following degradation of 14C-DIP-trypsin with alpha-chymotrypsin. Biochim Biophys Acta. 1956 Jan;19(1):193–195. [PubMed]
  • Drapeau GR. The primary structure of staphylococcal protease. Can J Biochem. 1978 Jun;56(6):534–544. [PubMed]
  • Eder J, Rheinnecker M, Fersht AR. Hydrolysis of small peptide substrates parallels binding of chymotrypsin inhibitor 2 for mutants of subtilisin BPN'. FEBS Lett. 1993 Dec 13;335(3):349–352. [PubMed]
  • Estell DA, Graycar TP, Miller JV, Powers DB, Wells JA, Burnier JP, Ng PG. Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering. Science. 1986 Aug 8;233(4764):659–663. [PubMed]
  • Evnin LB, Vásquez JR, Craik CS. Substrate specificity of trypsin investigated by using a genetic selection. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6659–6663. [PMC free article] [PubMed]
  • Fujinaga M, Delbaere LT, Brayer GD, James MN. Refined structure of alpha-lytic protease at 1.7 A resolution. Analysis of hydrogen bonding and solvent structure. J Mol Biol. 1985 Aug 5;184(3):479–502. [PubMed]
  • Fujinaga M, James MN. Rat submaxillary gland serine protease, tonin. Structure solution and refinement at 1.8 A resolution. J Mol Biol. 1987 May 20;195(2):373–396. [PubMed]
  • Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434–1438. [PMC free article] [PubMed]
  • Graf L, Craik CS, Patthy A, Roczniak S, Fletterick RJ, Rutter WJ. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Biochemistry. 1987 May 5;26(9):2616–2623. [PubMed]
  • Gráf L, Jancsó A, Szilágyi L, Hegyi G, Pintér K, Náray-Szabó G, Hepp J, Medzihradszky K, Rutter WJ. Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4961–4965. [PMC free article] [PubMed]
  • Graham LD, Haggett KD, Jennings PA, Le Brocque DS, Whittaker RG, Schober PA. Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities. Biochemistry. 1993 Jun 22;32(24):6250–6258. [PubMed]
  • Grant GA, Eisen AZ. Substrate specificity of the collagenolytic serine protease from Uca pugilator: studies with noncollagenous substrates. Biochemistry. 1980 Dec 23;19(26):6089–6095. [PubMed]
  • Grant GA, Henderson KO, Eisen AZ, Bradshaw RA. Amino acid sequence of a collagenolytic protease from the hepatopancreas of the fiddler crab, Uca pugilator. Biochemistry. 1980 Sep 30;19(20):4653–4659. [PubMed]
  • Greer J. Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins. 1990;7(4):317–334. [PubMed]
  • Grøn H, Breddam K. Interdependency of the binding subsites in subtilisin. Biochemistry. 1992 Sep 22;31(37):8967–8971. [PubMed]
  • Grøn H, Meldal M, Breddam K. Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry. 1992 Jul 7;31(26):6011–6018. [PubMed]
  • Gros P, Betzel C, Dauter Z, Wilson KS, Hol WG. Molecular dynamics refinement of a thermitase-eglin-c complex at 1.98 A resolution and comparison of two crystal forms that differ in calcium content. J Mol Biol. 1989 Nov 20;210(2):347–367. [PubMed]
  • Harper JW, Cook RR, Roberts CJ, McLaughlin BJ, Powers JC. Active site mapping of the serine proteases human leukocyte elastase, cathepsin G, porcine pancreatic elastase, rat mast cell proteases I and II. Bovine chymotrypsin A alpha, and Staphylococcus aureus protease V-8 using tripeptide thiobenzyl ester substrates. Biochemistry. 1984 Jun 19;23(13):2995–3002. [PubMed]
  • Hedstrom L, Farr-Jones S, Kettner CA, Rutter WJ. Converting trypsin to chymotrypsin: ground-state binding does not determine substrate specificity. Biochemistry. 1994 Jul 26;33(29):8764–8769. [PubMed]
  • Hedstrom L, Szilagyi L, Rutter WJ. Converting trypsin to chymotrypsin: the role of surface loops. Science. 1992 Mar 6;255(5049):1249–1253. [PubMed]
  • Higaki JN, Evnin LB, Craik CS. Introduction of a cysteine protease active site into trypsin. Biochemistry. 1989 Nov 28;28(24):9256–9263. [PubMed]
  • Higaki JN, Haymore BL, Chen S, Fletterick RJ, Craik CS. Regulation of serine protease activity by an engineered metal switch. Biochemistry. 1990 Sep 18;29(37):8582–8586. [PubMed]
  • Horrevoets AJ, Tans G, Smilde AE, van Zonneveld AJ, Pannekoek H. Thrombin-variable region 1 (VR1). Evidence for the dominant contribution of VR1 of serine proteases to their interaction with plasminogen activator inhibitor 1. J Biol Chem. 1993 Jan 15;268(2):779–782. [PubMed]
  • Hwang JK, Warshel A. Why ion pair reversal by protein engineering is unlikely to succeed. Nature. 1988 Jul 21;334(6179):270–272. [PubMed]
  • Jackson DY, Burnier J, Quan C, Stanley M, Tom J, Wells JA. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science. 1994 Oct 14;266(5183):243–247. [PubMed]
  • Jackson SE, Fersht AR. Contribution of long-range electrostatic interactions to the stabilization of the catalytic transition state of the serine protease subtilisin BPN'. Biochemistry. 1993 Dec 21;32(50):13909–13916. [PubMed]
  • Joachimiak A, Haran TE, Sigler PB. Mutagenesis supports water mediated recognition in the trp repressor-operator system. EMBO J. 1994 Jan 15;13(2):367–372. [PMC free article] [PubMed]
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. [PubMed]
  • Kettner CA, Shenvi AB. Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids. J Biol Chem. 1984 Dec 25;259(24):15106–15114. [PubMed]
  • Kossiakoff AA, Spencer SA. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin. Biochemistry. 1981 Oct 27;20(22):6462–6474. [PubMed]
  • Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977;46:331–358. [PubMed]
  • LaVallie ER, Rehemtulla A, Racie LA, DiBlasio EA, Ferenz C, Grant KL, Light A, McCoy JM. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. J Biol Chem. 1993 Nov 5;268(31):23311–23317. [PubMed]
  • Lazure C, Seidah NG, Pélaprat D, Chrétien M. Proteases and posttranslational processing of prohormones: a review. Can J Biochem Cell Biol. 1983 Jul;61(7):501–515. [PubMed]
  • Le Trong H, Neurath H, Woodbury RG. Substrate specificity of the chymotrypsin-like protease in secretory granules isolated from rat mast cells. Proc Natl Acad Sci U S A. 1987 Jan;84(2):364–367. [PMC free article] [PubMed]
  • Le Trong H, Parmelee DC, Walsh KA, Neurath H, Woodbury RG. Amino acid sequence of rat mast cell protease I (chymase). Biochemistry. 1987 Nov 3;26(22):6988–6994. [PubMed]
  • Liao DI, Breddam K, Sweet RM, Bullock T, Remington SJ. Refined atomic model of wheat serine carboxypeptidase II at 2.2-A resolution. Biochemistry. 1992 Oct 13;31(40):9796–9812. [PubMed]
  • Liao DI, Remington SJ. Structure of wheat serine carboxypeptidase II at 3.5-A resolution. A new class of serine proteinase. J Biol Chem. 1990 Apr 25;265(12):6528–6531. [PubMed]
  • Light A, Fonseca P. The preparation and properties of the catalytic subunit of bovine enterokinase. J Biol Chem. 1984 Nov 10;259(21):13195–13198. [PubMed]
  • Lobe CG, Finlay BB, Paranchych W, Paetkau VH, Bleackley RC. Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science. 1986 May 16;232(4752):858–861. [PubMed]
  • Loewenthal R, Sancho J, Reinikainen T, Fersht AR. Long-range surface charge-charge interactions in proteins. Comparison of experimental results with calculations from a theoretical method. J Mol Biol. 1993 Jul 20;232(2):574–583. [PubMed]
  • Madison EL, Goldsmith EJ, Gerard RD, Gething MJ, Sambrook JF, Bassel-Duby RS. Amino acid residues that affect interaction of tissue-type plasminogen activator with plasminogen activator inhibitor 1. Proc Natl Acad Sci U S A. 1990 May;87(9):3530–3533. [PMC free article] [PubMed]
  • Magee AI, Grant DA, Hermon-Taylor J. The apparent molecular weights of human intestinal aminopeptidase, enterokinase and maltase in native duodenal fluid. Biochem J. 1977 Sep 1;165(3):583–585. [PMC free article] [PubMed]
  • Maroux S, Baratti J, Desnuelle P. Purification and specificity of porcine enterokinase. J Biol Chem. 1971 Aug 25;246(16):5031–5039. [PubMed]
  • Matthews BW, Sigler PB, Henderson R, Blow DM. Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature. 1967 May 13;214(5089):652–656. [PubMed]
  • Matthews DJ, Wells JA. Substrate phage: selection of protease substrates by monovalent phage display. Science. 1993 May 21;260(5111):1113–1117. [PubMed]
  • Matthews G, Shennan KI, Seal AJ, Taylor NA, Colman A, Docherty K. Autocatalytic maturation of the prohormone convertase PC2. J Biol Chem. 1994 Jan 7;269(1):588–592. [PubMed]
  • McGrath ME, Haymore BL, Summers NL, Craik CS, Fletterick RJ. Structure of an engineered, metal-actuated switch in trypsin. Biochemistry. 1993 Mar 2;32(8):1914–1919. [PubMed]
  • McGrath ME, Vásquez JR, Craik CS, Yang AS, Honig B, Fletterick RJ. Perturbing the polar environment of Asp102 in trypsin: consequences of replacing conserved Ser214. Biochemistry. 1992 Mar 31;31(12):3059–3064. [PubMed]
  • McGrath ME, Wilke ME, Higaki JN, Craik CS, Fletterick RJ. Crystal structures of two engineered thiol trypsins. Biochemistry. 1989 Nov 28;28(24):9264–9270. [PubMed]
  • McPhalen CA, James MN. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry. 1988 Aug 23;27(17):6582–6598. [PubMed]
  • Mizushima N, Spellmeyer D, Hirono S, Pearlman D, Kollman P. Free energy perturbation calculations on binding and catalysis after mutating threonine 220 in subtilisin. J Biol Chem. 1991 Jun 25;266(18):11801–11809. [PubMed]
  • Mortensen UH, Remington SJ, Breddam K. Site-directed mutagenesis on (serine) carboxypeptidase Y. A hydrogen bond network stabilizes the transition state by interaction with the C-terminal carboxylate group of the substrate. Biochemistry. 1994 Jan 18;33(2):508–517. [PubMed]
  • Moult J, Sussman F, James MN. Electron density calculations as an extension of protein structure refinement. Streptomyces griseus protease A at 1.5 A resolution. J Mol Biol. 1985 Apr 20;182(4):555–566. [PubMed]
  • Murphy ME, Moult J, Bleackley RC, Gershenfeld H, Weissman IL, James MN. Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes. Proteins. 1988;4(3):190–204. [PubMed]
  • Narayana SV, Carson M, el-Kabbani O, Kilpatrick JM, Moore D, Chen X, Bugg CE, Volanakis JE, DeLucas LJ. Structure of human factor D. A complement system protein at 2.0 A resolution. J Mol Biol. 1994 Jan 14;235(2):695–708. [PubMed]
  • Neurath H. Evolution of proteolytic enzymes. Science. 1984 Apr 27;224(4647):350–357. [PubMed]
  • Nienaber VL, Breddam K, Birktoft JJ. A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding. Biochemistry. 1993 Nov 2;32(43):11469–11475. [PubMed]
  • Ny T, Sawdey M, Lawrence D, Millan JL, Loskutoff DJ. Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type plasminogen activator inhibitor. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6776–6780. [PMC free article] [PubMed]
  • Odake S, Kam CM, Narasimhan L, Poe M, Blake JT, Krahenbuhl O, Tschopp J, Powers JC. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry. 1991 Feb 26;30(8):2217–2227. [PubMed]
  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, et al. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. [PubMed]
  • Otwinowski Z, Schevitz RW, Zhang RG, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988 Sep 22;335(6188):321–329. [PubMed]
  • Padmanabhan K, Padmanabhan KP, Tulinsky A, Park CH, Bode W, Huber R, Blankenship DT, Cardin AD, Kisiel W. Structure of human des(1-45) factor Xa at 2.2 A resolution. J Mol Biol. 1993 Aug 5;232(3):947–966. [PubMed]
  • Perona JJ, Evnin LB, Craik CS. A genetic selection elucidates structural determinants of arginine versus lysine specificity in trypsin. Gene. 1993 Dec 27;137(1):121–126. [PubMed]
  • Perona JJ, Hedstrom L, Rutter WJ, Fletterick RJ. Structural origins of substrate discrimination in trypsin and chymotrypsin. Biochemistry. 1995 Feb 7;34(5):1489–1499. [PubMed]
  • Perona JJ, Hedstrom L, Wagner RL, Rutter WJ, Craik CS, Fletterick RJ. Exogenous acetate reconstitutes the enzymatic activity of trypsin Asp189Ser. Biochemistry. 1994 Mar 22;33(11):3252–3259. [PubMed]
  • Perona JJ, Tsu CA, Craik CS, Fletterick RJ. Crystal structures of rat anionic trypsin complexed with the protein inhibitors APPI and BPTI. J Mol Biol. 1993 Apr 5;230(3):919–933. [PubMed]
  • Perona JJ, Tsu CA, McGrath ME, Craik CS, Fletterick RJ. Relocating a negative charge in the binding pocket of trypsin. J Mol Biol. 1993 Apr 5;230(3):934–949. [PubMed]
  • Polgar L. pH-dependent mechanism in the catalysis of prolyl endopeptidase from pig muscle. Eur J Biochem. 1991 Apr 23;197(2):441–447. [PubMed]
  • Poulos TL, Alden RA, Freer ST, Birktoft JJ, Kraut J. Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. X-ray crystallographic comparison of lysine- and phenylalanine-polypeptide chloromethyl ketone-inhibited subtilisin. J Biol Chem. 1976 Feb 25;251(4):1097–1103. [PubMed]
  • Powers JC, Tanaka T, Harper JW, Minematsu Y, Barker L, Lincoln D, Crumley KV, Fraki JE, Schechter NM, Lazarus GG, et al. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry. 1985 Apr 9;24(8):2048–2058. [PubMed]
  • Rao SN, Singh UC, Bash PA, Kollman PA. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin. Nature. 1987 Aug 6;328(6130):551–554. [PubMed]
  • Read RJ, James MN. Refined crystal structure of Streptomyces griseus trypsin at 1.7 A resolution. J Mol Biol. 1988 Apr 5;200(3):523–551. [PubMed]
  • Rehemtulla A, Barr PJ, Rhodes CJ, Kaufman RJ. PACE4 is a member of the mammalian propeptidase family that has overlapping but not identical substrate specificity to PACE. Biochemistry. 1993 Nov 2;32(43):11586–11590. [PubMed]
  • Remington SJ, Woodbury RG, Reynolds RA, Matthews BW, Neurath H. The structure of rat mast cell protease II at 1.9-A resolution. Biochemistry. 1988 Oct 18;27(21):8097–8105. [PubMed]
  • Rheinnecker M, Baker G, Eder J, Fersht AR. Engineering a novel specificity in subtilisin BPN'. Biochemistry. 1993 Feb 9;32(5):1199–1203. [PubMed]
  • Rheinnecker M, Eder J, Pandey PS, Fersht AR. Variants of subtilisin BPN' with altered specificity profiles. Biochemistry. 1994 Jan 11;33(1):221–225. [PubMed]
  • Robertus JD, Alden RA, Birktoft JJ, Kraut J, Powers JC, Wilcox PE. An x-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisin BPN'. Biochemistry. 1972 Jun 20;11(13):2439–2449. [PubMed]
  • Robertus JD, Kraut J, Alden RA, Birktoft JJ. Subtilisin; a stereochemical mechanism involving transition-state stabilization. Biochemistry. 1972 Nov 7;11(23):4293–4303. [PubMed]
  • Rose GD, Creamer TP. Protein folding: predicting predicting. Proteins. 1994 May;19(1):1–3. [PubMed]
  • Rühlmann A, Kukla D, Schwager P, Bartels K, Huber R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. J Mol Biol. 1973 Jul 5;77(3):417–436. [PubMed]
  • Russell AJ, Thomas PG, Fersht AR. Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering. J Mol Biol. 1987 Feb 20;193(4):803–813. [PubMed]
  • Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J. Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry. 1987 Apr 21;26(8):2289–2293. [PubMed]
  • Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. [PubMed]
  • Schellenberger V, Turck CW, Hedstrom L, Rutter WJ. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles. Biochemistry. 1993 Apr 27;32(16):4349–4353. [PubMed]
  • Schellenberger V, Turck CW, Rutter WJ. Role of the S' subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma mansoni. Biochemistry. 1994 Apr 12;33(14):4251–4257. [PubMed]
  • Seidah NG, Day R, Marcinkiewicz M, Benjannet S, Chrétien M. Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme. 1991;45(5-6):271–284. [PubMed]
  • Sellos D, Van Wormhoudt A. Molecular cloning of a cDNA that encodes a serine protease with chymotryptic and collagenolytic activities in the hepatopancreas of the shrimp Penaeus vanameii (Crustacea, Decapoda). FEBS Lett. 1992 Sep 14;309(3):219–224. [PubMed]
  • Shakked Z, Guzikevich-Guerstein G, Frolow F, Rabinovich D, Joachimiak A, Sigler PB. Determinants of repressor/operator recognition from the structure of the trp operator binding site. Nature. 1994 Mar 31;368(6470):469–473. [PubMed]
  • Siezen RJ, Bruinenberg PG, Vos P, van Alen-Boerrigter I, Nijhuis M, Alting AC, Exterkate FA, de Vos WM. Engineering of the substrate-binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis. Protein Eng. 1993 Nov;6(8):927–937. [PubMed]
  • Sinha S, Watorek W, Karr S, Giles J, Bode W, Travis J. Primary structure of human neutrophil elastase. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2228–2232. [PMC free article] [PubMed]
  • Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):340–344. [PMC free article] [PubMed]
  • Smith CL, DeLotto R. Ventralizing signal determined by protease activation in Drosophila embryogenesis. Nature. 1994 Apr 7;368(6471):548–551. [PubMed]
  • Sørensen SB, Bech LM, Meldal M, Breddam K. Mutational replacements of the amino acid residues forming the hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus. Biochemistry. 1993 Sep 7;32(35):8994–8999. [PubMed]
  • Sprang S, Standing T, Fletterick RJ, Stroud RM, Finer-Moore J, Xuong NH, Hamlin R, Rutter WJ, Craik CS. The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. Science. 1987 Aug 21;237(4817):905–909. [PubMed]
  • Stein RL, Strimpler AM, Hori H, Powers JC. Catalysis by human leukocyte elastase: proton inventory as a mechanistic probe. Biochemistry. 1987 Mar 10;26(5):1305–1314. [PubMed]
  • Steitz TA, Shulman RG. Crystallographic and NMR studies of the serine proteases. Annu Rev Biophys Bioeng. 1982;11:419–444. [PubMed]
  • Stroud RM. A family of protein-cutting proteins. Sci Am. 1974 Jul;231(1):74–88. [PubMed]
  • Svendsen I, Jensen MR, Breddam K. The primary structure of the glutamic acid-specific protease of Streptomyces griseus. FEBS Lett. 1991 Nov 4;292(1-2):165–167. [PubMed]
  • Takeuchi Y, Noguchi S, Satow Y, Kojima S, Kumagai I, Miura K, Nakamura KT, Mitsui Y. Molecular recognition at the active site of subtilisin BPN': crystallographic studies using genetically engineered proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor). Protein Eng. 1991 Jun;4(5):501–508. [PubMed]
  • Teplyakov AV, van der Laan JM, Lammers AA, Kelders H, Kalk KH, Misset O, Mulleners LJ, Dijkstra BW. Protein engineering of the high-alkaline serine protease PB92 from Bacillus alcalophilus: functional and structural consequences of mutation at the S4 substrate binding pocket. Protein Eng. 1992 Jul;5(5):413–420. [PubMed]
  • Thompson RC, Blout ER. Evidence for an extended active center in elastase. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1734–1740. [PMC free article] [PubMed]
  • Tsu CA, Perona JJ, Schellenberger V, Turck CW, Craik CS. The substrate specificity of Uca pugilator collagenolytic serine protease 1 correlates with the bovine type I collagen cleavage sites. J Biol Chem. 1994 Jul 29;269(30):19565–19572. [PubMed]
  • van den Ouweland AM, van Duijnhoven HL, Keizer GD, Dorssers LC, Van de Ven WJ. Structural homology between the human fur gene product and the subtilisin-like protease encoded by yeast KEX2. Nucleic Acids Res. 1990 Feb 11;18(3):664–664. [PMC free article] [PubMed]
  • Van de Ven WJ, Roebroek AJ, Van Duijnhoven HL. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit Rev Oncog. 1993;4(2):115–136. [PubMed]
  • Warshel A, Naray-Szabo G, Sussman F, Hwang JK. How do serine proteases really work? Biochemistry. 1989 May 2;28(9):3629–3637. [PubMed]
  • Watson HC, Shotton DM, Cox JM, Muirhead H. Three-dimensional Fourier synthesis of tosyl-elastase at 3.5 å resolution. Nature. 1970 Feb 28;225(5235):806–811. [PubMed]
  • Wei AZ, Mayr I, Bode W. The refined 2.3 A crystal structure of human leukocyte elastase in a complex with a valine chloromethyl ketone inhibitor. FEBS Lett. 1988 Jul 18;234(2):367–373. [PubMed]
  • Wells JA, Cunningham BC, Graycar TP, Estell DA. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5167–5171. [PMC free article] [PubMed]
  • Wells JA, Estell DA. Subtilisin--an enzyme designed to be engineered. Trends Biochem Sci. 1988 Aug;13(8):291–297. [PubMed]
  • Wells JA, Powers DB, Bott RR, Graycar TP, Estell DA. Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1219–1223. [PMC free article] [PubMed]
  • Wilke ME, Higaki JN, Craik CS, Fletterick RJ. Crystallographic analysis of trypsin-G226A. A specificity pocket mutant of rat trypsin with altered binding and catalysis. J Mol Biol. 1991 Jun 5;219(3):525–532. [PubMed]
  • Wilson C, Mace JE, Agard DA. Computational method for the design of enzymes with altered substrate specificity. J Mol Biol. 1991 Jul 20;220(2):495–506. [PubMed]
  • Woodbury RG, Everitt M, Sanada Y, Katunuma N, Lagunoff D, Neurath H. A major serine protease in rat skeletal muscle: evidence for its mast cell origin. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5311–5313. [PMC free article] [PubMed]
  • Woodbury RG, Gruzenski GM, Lagunoff D. Immunofluorescent localization of a serine protease in rat small intestine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2785–2789. [PMC free article] [PubMed]
  • Wright CS, Alden RA, Kraut J. Structure of subtilisin BPN' at 2.5 angström resolution. Nature. 1969 Jan 18;221(5177):235–242. [PubMed]
  • Yoshida N, Everitt MT, Neurath H, Woodbury RG, Powers JC. Substrate specificity of two chymotrypsin-like proteases from rat mast cells. Studies with peptide 4-nitroanilides and comparison with cathepsin G. Biochemistry. 1980 Dec 9;19(25):5799–5804. [PubMed]
  • Zhou GW, Guo J, Huang W, Fletterick RJ, Scanlan TS. Crystal structure of a catalytic antibody with a serine protease active site. Science. 1994 Aug 19;265(5175):1059–1064. [PubMed]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Conserved Domains
    Conserved Domains
    Link to related CDD entry
  • MedGen
    Related information in MedGen
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Structure
    Published 3D structures
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...