• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of prosciprotein sciencecshl presssubscriptionsetoc alertsthe protein societyjournal home
Protein Sci. Dec 1995; 4(12): 2455–2468.
PMCID: PMC2143041

3D domain swapping: a mechanism for oligomer assembly.

Abstract

3D domain swapping is a mechanism for forming oligomeric proteins from their monomers. In 3D domain swapping, one domain of a monomeric protein is replaced by the same domain from an identical protein chain. The result is an intertwined dimer or higher oligomer, with one domain of each subunit replaced by the identical domain from another subunit. The swapped "domain" can be as large as an entire tertiary globular domain, or as small as an alpha-helix or a strand of a beta-sheet. Examples of 3D domain swapping are reviewed that suggest domain swapping can serve as a mechanism for functional interconversion between monomers and oligomers, and that domain swapping may serve as a mechanism for evolution of some oligomeric proteins. Domain-swapped proteins present examples of a single protein chain folding into two distinct structures.

Full Text

The Full Text of this article is available as a PDF (6.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Almassy RJ, Janson CA, Hamlin R, Xuong NH, Eisenberg D. Novel subunit-subunit interactions in the structure of glutamine synthetase. Nature. 323(6086):304–309. [PubMed]
  • Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. [PubMed]
  • Arvai AS, Bourne Y, Hickey MJ, Tainer JA. Crystal structure of the human cell cycle protein CksHs1: single domain fold with similarity to kinase N-lobe domain. J Mol Biol. 1995 Jun 23;249(5):835–842. [PubMed]
  • Bax B, Lapatto R, Nalini V, Driessen H, Lindley PF, Mahadevan D, Blundell TL, Slingsby C. X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature. 1990 Oct 25;347(6295):776–780. [PubMed]
  • Bennett MJ, Choe S, Eisenberg D. Refined structure of dimeric diphtheria toxin at 2.0 A resolution. Protein Sci. 1994 Sep;3(9):1444–1463. [PMC free article] [PubMed]
  • Bennett MJ, Choe S, Eisenberg D. Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3127–3131. [PMC free article] [PubMed]
  • Bennett MJ, Eisenberg D. Refined structure of monomeric diphtheria toxin at 2.3 A resolution. Protein Sci. 1994 Sep;3(9):1464–1475. [PMC free article] [PubMed]
  • Berg OG. The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture. Biopolymers. 1990;30(11-12):1027–1037. [PubMed]
  • Bibi E, Kaback HR. Functional complementation of internal deletion mutants in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1524–1528. [PMC free article] [PubMed]
  • Cafaro V, De Lorenzo C, Piccoli R, Bracale A, Mastronicola MR, Di Donato A, D'Alessio G. The antitumor action of seminal ribonuclease and its quaternary conformations. FEBS Lett. 1995 Feb 6;359(1):31–34. [PubMed]
  • Carroll SF, Barbieri JT, Collier RJ. Dimeric form of diphtheria toxin: purification and characterization. Biochemistry. 1986 May 6;25(9):2425–2430. [PubMed]
  • Caspar DL. Movement and self-control in protein assemblies. Quasi-equivalence revisited. Biophys J. 1980 Oct;32(1):103–138. [PMC free article] [PubMed]
  • Collier RJ. Diphtheria toxin: mode of action and structure. Bacteriol Rev. 1975 Mar;39(1):54–85. [PMC free article] [PubMed]
  • Colon W, Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992 Sep 15;31(36):8654–8660. [PubMed]
  • CRESTFIELD AM, STEIN WH, MOORE S. On the aggregation of bovine pancreatic ribonuclease. Arch Biochem Biophys. 1962 Sep;Suppl 1:217–222. [PubMed]
  • CRESTFIELD AM, STEIN WH, MOORE S. Properties and conformation of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2421–2428. [PubMed]
  • Diederichs K, Boone T, Karplus PA. Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor. Science. 1991 Dec 20;254(5039):1779–1782. [PubMed]
  • Eisenberg D, McLachlan AD. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. [PubMed]
  • Komine S, Yoshida K, Yamashita H, Masaki Z. Voiding dysfunction in patients with human T-lymphotropic virus type-1-associated myelopathy (HAM). Paraplegia. 1989 Jun;27(3):217–221. [PubMed]
  • Erickson HP. Co-operativity in protein-protein association. The structure and stability of the actin filament. J Mol Biol. 1989 Apr 5;206(3):465–474. [PubMed]
  • Finkelstein AV, Janin J. The price of lost freedom: entropy of bimolecular complex formation. Protein Eng. 1989 Oct;3(1):1–3. [PubMed]
  • Fita I, Rossmann MG. The active center of catalase. J Mol Biol. 1985 Sep 5;185(1):21–37. [PubMed]
  • Gilbert W. Why genes in pieces? Nature. 1978 Feb 9;271(5645):501–501. [PubMed]
  • Jaenicke R. Folding and association versus misfolding and aggregation of proteins. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):97–105. [PubMed]
  • Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988 Nov 5;204(1):155–164. [PubMed]
  • Jones EY, Davis SJ, Williams AF, Harlos K, Stuart DI. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature. 1992 Nov 19;360(6401):232–239. [PubMed]
  • Jones TA, Zou JY, Cowan SW, Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. [PubMed]
  • Kikuchi Y, King J. Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol. 1975 Dec 25;99(4):645–672. [PubMed]
  • Klafki HW, Pick AI, Pardowitz I, Cole T, Awni LA, Barnikol HU, Mayer F, Kratzin HD, Hilschmann N. Reduction of disulfide bonds in an amyloidogenic Bence Jones protein leads to formation of "amyloid-like" fibrils in vitro. Biol Chem Hoppe Seyler. 1993 Dec;374(12):1117–1122. [PubMed]
  • Kortt AA, Malby RL, Caldwell JB, Gruen LC, Ivancic N, Lawrence MC, Howlett GJ, Webster RG, Hudson PJ, Colman PM. Recombinant anti-sialidase single-chain variable fragment antibody. Characterization, formation of dimer and higher-molecular-mass multimers and the solution of the crystal structure of the single-chain variable fragment/sialidase complex. Eur J Biochem. 1994 Apr 1;221(1):151–157. [PubMed]
  • Koshland DE, Jr, Némethy G, Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. [PubMed]
  • Loll PJ, Lattman EE. The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 A. Proteins. 1989;5(3):183–201. [PubMed]
  • London J, Skrzynia C, Goldberg ME. Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur J Biochem. 1974 Sep 1;47(2):409–415. [PubMed]
  • Milburn MV, Hassell AM, Lambert MH, Jordan SR, Proudfoot AE, Graber P, Wells TN. A novel dimer configuration revealed by the crystal structure at 2.4 A resolution of human interleukin-5. Nature. 1993 May 13;363(6425):172–176. [PubMed]
  • MONOD J, WYMAN J, CHANGEUX JP. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. [PubMed]
  • Murray AJ, Lewis SJ, Barclay AN, Brady RL. One sequence, two folds: a metastable structure of CD2. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7337–7341. [PMC free article] [PubMed]
  • Parge HE, Arvai AS, Murtari DJ, Reed SI, Tainer JA. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control. Science. 1993 Oct 15;262(5132):387–395. [PubMed]
  • Piccoli R, D'Alessio G. Relationships between nonhyperbolic kinetics and dimeric structure in ribonucleases. J Biol Chem. 1984 Jan 25;259(2):693–695. [PubMed]
  • Piccoli R, Di Donato A, D'Alessio G. Co-operativity in seminal ribonuclease function. Kinetic studies. Biochem J. 1988 Jul 15;253(2):329–336. [PMC free article] [PubMed]
  • Piccoli R, Tamburrini M, Piccialli G, Di Donato A, Parente A, D'Alessio G. The dual-mode quaternary structure of seminal RNase. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1870–1874. [PMC free article] [PubMed]
  • Raag R, Whitlow M. Single-chain Fvs. FASEB J. 1995 Jan;9(1):73–80. [PubMed]
  • Rozwarski DA, Gronenborn AM, Clore GM, Bazan JF, Bohm A, Wlodawer A, Hatada M, Karplus PA. Structural comparisons among the short-chain helical cytokines. Structure. 1994 Mar 15;2(3):159–173. [PubMed]
  • Satow Y, Cohen GH, Padlan EA, Davies DR. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. [PubMed]
  • Schreuder HA, Knight S, Curmi PM, Andersson I, Cascio D, Sweet RM, Brändén CI, Eisenberg D. Crystal structure of activated tobacco rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate. Protein Sci. 1993 Jul;2(7):1136–1146. [PMC free article] [PubMed]
  • Senda T, Shimazu T, Matsuda S, Kawano G, Shimizu H, Nakamura KT, Mitsui Y. Three-dimensional crystal structure of recombinant murine interferon-beta. EMBO J. 1992 Sep;11(9):3193–3201. [PMC free article] [PubMed]
  • Suzuki H, Parente A, Farina B, Greco L, La Montagna R, Leone E. Complete amino-acid sequence of bovine seminal ribonuclease, a dimeric protein from seminal plasma. Biol Chem Hoppe Seyler. 1987 Oct;368(10):1305–1312. [PubMed]
  • Takahashi M, Yoshida MC, Satoh H, Hilgers J, Yaoita Y, Honjo T. Chromosomal mapping of the mouse IL-4 and human IL-5 genes. Genomics. 1989 Jan;4(1):47–52. [PubMed]
  • Tanabe T, Konishi M, Mizuta T, Noma T, Honjo T. Molecular cloning and structure of the human interleukin-5 gene. J Biol Chem. 1987 Dec 5;262(34):16580–16584. [PubMed]
  • Trinkl S, Glockshuber R, Jaenicke R. Dimerization of beta B2-crystallin: the role of the linker peptide and the N- and C-terminal extensions. Protein Sci. 1994 Sep;3(9):1392–1400. [PMC free article] [PubMed]
  • Wlodawer A, Bott R, Sjölin L. The refined crystal structure of ribonuclease A at 2.0 A resolution. J Biol Chem. 1982 Feb 10;257(3):1325–1332. [PubMed]
  • Yan Y, Winograd E, Viel A, Cronin T, Harrison SC, Branton D. Crystal structure of the repetitive segments of spectrin. Science. 1993 Dec 24;262(5142):2027–2030. [PubMed]
  • Zabin I, Villarejo MR. Protein complementation. Annu Rev Biochem. 1975;44:295–313. [PubMed]
  • Zdanov A, Schalk-Hihi C, Gustchina A, Tsang M, Weatherbee J, Wlodawer A. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure. 1995 Jun 15;3(6):591–601. [PubMed]
  • Zimmerman SB. Macromolecular crowding effects on macromolecular interactions: some implications for genome structure and function. Biochim Biophys Acta. 1993 Nov 16;1216(2):175–185. [PubMed]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...