• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of prosciprotein sciencecshl presssubscriptionsetoc alertsthe protein societyjournal home
Protein Sci. Dec 1994; 3(12): 2207–2216.
PMCID: PMC2142776

A revised set of potentials for beta-turn formation in proteins.

Abstract

Three thousand eight hundred ninety-nine beta-turns have been identified and classified using a nonhomologous data set of 205 protein chains. These were used to derive beta-turn positional potentials for turn types I' and II' for the first time and to provide updated potentials for formation of the more common types I, II, and VIII. Many of the sequence preferences for each of the 4 positions in turns can be rationalized in terms of the formation of stabilizing hydrogen bonds, preferences for amino acids to adopt a particular conformation in phi, psi space, and the involvement of turn types I' and II' in beta-hairpins. Only 1,632 (42%) of the turns occur in isolation; the remainder have at least 1 residue in common with another turn and have hence been classified as multiple turns. Several types of multiple turn have been identified and analyzed.

Full Text

The Full Text of this article is available as a PDF (800K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature. 1989 Feb 23;337(6209):709–716. [PubMed]
  • Artymiuk PJ, Blake CC. Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions. J Mol Biol. 1981 Nov 15;152(4):737–762. [PubMed]
  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. [PubMed]
  • Bode W, Papamokos E, Musil D. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry. Eur J Biochem. 1987 Aug 3;166(3):673–692. [PubMed]
  • Chou PY, Fasman GD. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. [PubMed]
  • Chou PY, Fasman GD. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. [PubMed]
  • Furey W, Jr, Wang BC, Yoo CS, Sax M. Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 A resolution. J Mol Biol. 1983 Jul 5;167(3):661–692. [PubMed]
  • Isogai Y, Némethy G, Rackovsky S, Leach SJ, Scheraga HA. Characterization of multiple bends in proteins. Biopolymers. 1980 Jun;19(6):1183–1210. [PubMed]
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. [PubMed]
  • Lewis PN, Momany FA, Scheraga HA. Folding of polypeptide chains in proteins: a proposed mechanism for folding. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2293–2297. [PMC free article] [PubMed]
  • Lewis PN, Momany FA, Scheraga HA. Chain reversals in proteins. Biochim Biophys Acta. 1973 Apr 20;303(2):211–229. [PubMed]
  • Mattos C, Petsko GA, Karplus M. Analysis of two-residue turns in proteins. J Mol Biol. 1994 May 20;238(5):733–747. [PubMed]
  • McDonald IK, Thornton JM. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. [PubMed]
  • Orengo CA, Brown NP, Taylor WR. Fast structure alignment for protein databank searching. Proteins. 1992 Oct;14(2):139–167. [PubMed]
  • Rees DC, Lewis M, Lipscomb WN. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. [PubMed]
  • Richardson JS. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. [PubMed]
  • Rose GD, Gierasch LM, Smith JA. Turns in peptides and proteins. Adv Protein Chem. 1985;37:1–109. [PubMed]
  • Steigemann W, Weber E. Structure of erythrocruorin in different ligand states refined at 1.4 A resolution. J Mol Biol. 1979 Jan 25;127(3):309–338. [PubMed]
  • Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol. 1982 Sep 15;160(2):181–217. [PubMed]
  • Veerapandian B, Cooper JB, Sali A, Blundell TL. X-ray analyses of aspartic proteinases. III Three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 A resolution. J Mol Biol. 1990 Dec 20;216(4):1017–1029. [PubMed]
  • Venkatachalam CM. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers. 1968 Oct;6(10):1425–1436. [PubMed]
  • Wilmot CM, Thornton JM. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng. 1990 May;3(6):479–493. [PubMed]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...