• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of prosciprotein sciencecshl presssubscriptionsetoc alertsthe protein societyjournal home
Protein Sci. Feb 1992; 1(2): 216–226.
PMCID: PMC2142193

Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.

Abstract

The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of homologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chains. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with Protein Science. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of aligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment.

Full Text

The Full Text of this article is available as a PDF (905K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baumann G, Frömmel C, Sander C. Polarity as a criterion in protein design. Protein Eng. 1989 Jan;2(5):329–334. [PubMed]
  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. [PubMed]
  • Hubbard TJ, Blundell TL. Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modelling. Protein Eng. 1987 Jun;1(3):159–171. [PubMed]
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. [PubMed]
  • Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell. 1990 Nov 2;63(3):579–590. [PubMed]
  • Lee B, Richards FM. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. [PubMed]
  • Lüthy R, McLachlan AD, Eisenberg D. Secondary structure-based profiles: use of structure-conserving scoring tables in searching protein sequence databases for structural similarities. Proteins. 1991;10(3):229–239. [PubMed]
  • McLachlan AD. Tests for comparing related amino-acid sequences. Cytochrome c and cytochrome c 551 . J Mol Biol. 1971 Oct 28;61(2):409–424. [PubMed]
  • Novotný J, Bruccoleri R, Karplus M. An analysis of incorrectly folded protein models. Implications for structure predictions. J Mol Biol. 1984 Aug 25;177(4):787–818. [PubMed]
  • Novotný J, Rashin AA, Bruccoleri RE. Criteria that discriminate between native proteins and incorrectly folded models. Proteins. 1988;4(1):19–30. [PubMed]
  • Overington J, Johnson MS, Sali A, Blundell TL. Tertiary structural constraints on protein evolutionary diversity: templates, key residues and structure prediction. Proc Biol Sci. 1990 Aug 22;241(1301):132–145. [PubMed]
  • Ponder JW, Richards FM. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. [PubMed]
  • Ramachandran GN, Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. [PubMed]
  • Steigemann W, Weber E. Structure of erythrocruorin in different ligand states refined at 1.4 A resolution. J Mol Biol. 1979 Jan 25;127(3):309–338. [PubMed]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...