Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. Jul 2, 1996; 134(2): 573–583.
PMCID: PMC2120877

Altered rate of fibronectin matrix assembly by deletion of the first type III repeats

Abstract

The assembly of fibronectin (FN) into a fibrillar matrix is a complex stepwise process that involves binding to integrin receptors as well as interactions between FN molecules. To follow the progression of matrix formation and determine the stages during which specific domains function, we have developed cell lines that lack an endogenous FN matrix but will form fibrils when provided with exogenous FN. Recombinant FNs (recFN) containing deletions of either the RGD cell- binding sequence (RGD-) or the first type III repeats (FN delta III1-7) including the III1 FN binding site were generated with the baculovirus insect cell expression system. After addition to cells, recFN matrix assembly was monitored by indirect immunofluorescence and by insolubility in the detergent deoxycholate (DOC). In the absence of any native FN, FN delta III1-7 was assembled into fibrils and was converted into DOC-insoluble matrix. This process could be inhibited by the amino- terminal 70 kD fragment of FN, showing that FN delta III1-7 follows an assembly pathway similar to FN. The progression of FN delta III1-7 assembly differed from native FN in that the recFN became DOC-insoluble more quickly. In contrast, RGD- recFNs were not formed into fibrils except when added in combination with native FN. These results show that the RGD sequence is essential for the initiation step but fibrils can form independently of the III1-7 modules. The altered rate of FN delta III1-7 assembly suggests that one function of the missing repeats might be to modulate an early stage of matrix formation.

Full Text

The Full Text of this article is available as a PDF (2.6M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguirre KM, McCormick RJ, Schwarzbauer JE. Fibronectin self-association is mediated by complementary sites within the amino-terminal one-third of the molecule. J Biol Chem. 1994 Nov 11;269(45):27863–27868. [PubMed]
  • Akiyama SK, Yamada SS, Chen WT, Yamada KM. Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol. 1989 Aug;109(2):863–875. [PMC free article] [PubMed]
  • Brown PJ, Juliano RL. Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell-surface glycoprotein. Science. 1985 Jun 21;228(4706):1448–1451. [PubMed]
  • Busk M, Pytela R, Sheppard D. Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. J Biol Chem. 1992 Mar 25;267(9):5790–5796. [PubMed]
  • Castle AM, Schwarzbauer JE, Wright RL, Castle JD. Differential targeting of recombinant fibronectins in AtT-20 cells based on their efficiency of aggregation. J Cell Sci. 1995 Dec;108(Pt 12):3827–3837. [PubMed]
  • Chernousov MA, Faerman AI, Frid MG, Printseva OYu, Koteliansky VE. Monoclonal antibody to fibronectin which inhibits extracellular matrix assembly. FEBS Lett. 1987 Jun 8;217(1):124–128. [PubMed]
  • Chernousov MA, Fogerty FJ, Koteliansky VE, Mosher DF. Role of the I-9 and III-1 modules of fibronectin in formation of an extracellular fibronectin matrix. J Biol Chem. 1991 Jun 15;266(17):10851–10858. [PubMed]
  • Choi MG, Hynes RO. Biosynthesis and processing of fibronectin in NIL.8 hamster cells. J Biol Chem. 1979 Dec 10;254(23):12050–12055. [PubMed]
  • Darribère T, Guida K, Larjava H, Johnson KE, Yamada KM, Thiery JP, Boucaut JC. In vivo analyses of integrin beta 1 subunit function in fibronectin matrix assembly. J Cell Biol. 1990 May;110(5):1813–1823. [PMC free article] [PubMed]
  • Darribère T, Koteliansky VE, Chernousov MA, Akiyama SK, Yamada KM, Thiery JP, Boucaut JC. Distinct regions of human fibronectin are essential for fibril assembly in an in vivo developing system. Dev Dyn. 1992 May;194(1):63–70. [PubMed]
  • Engvall E, Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. [PubMed]
  • Faull RJ, Kovach NL, Harlan JM, Ginsberg MH. Affinity modulation of integrin alpha 5 beta 1: regulation of the functional response by soluble fibronectin. J Cell Biol. 1993 Apr;121(1):155–162. [PMC free article] [PubMed]
  • Fogerty FJ, Akiyama SK, Yamada KM, Mosher DF. Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J Cell Biol. 1990 Aug;111(2):699–708. [PMC free article] [PubMed]
  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993 Dec;119(4):1079–1091. [PubMed]
  • Giancotti FG, Ruoslahti E. Elevated levels of the alpha 5 beta 1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell. 1990 Mar 9;60(5):849–859. [PubMed]
  • Ginsberg MH, Du X, Plow EF. Inside-out integrin signalling. Curr Opin Cell Biol. 1992 Oct;4(5):766–771. [PubMed]
  • Hocking DC, Sottile J, McKeown-Longo PJ. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J Biol Chem. 1994 Jul 22;269(29):19183–19187. [PubMed]
  • Hynes RO, Destree A. Extensive disulfide bonding at the mammalian cell surface. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2855–2859. [PMC free article] [PubMed]
  • Hynes RO, George EL, Georges EN, Guan JL, Rayburn H, Yang JT. Toward a genetic analysis of cell-matrix adhesion. Cold Spring Harb Symp Quant Biol. 1992;57:249–258. [PubMed]
  • Keski-Oja J, Mosher DF, Vaheri A. Dimeric character of fibronectin, a major cell surface-associated glycoprotein. Biochem Biophys Res Commun. 1977 Jan 24;74(2):699–706. [PubMed]
  • Lin AY, Devaux B, Green A, Sagerström C, Elliott JF, Davis MM. Expression of T cell antigen receptor heterodimers in a lipid-linked form. Science. 1990 Aug 10;249(4969):677–679. [PubMed]
  • Marcantonio EE, Hynes RO. Antibodies to the conserved cytoplasmic domain of the integrin beta 1 subunit react with proteins in vertebrates, invertebrates, and fungi. J Cell Biol. 1988 May;106(5):1765–1772. [PMC free article] [PubMed]
  • McDonald JA. Extracellular matrix assembly. Annu Rev Cell Biol. 1988;4:183–207. [PubMed]
  • McDonald JA, Quade BJ, Broekelmann TJ, LaChance R, Forsman K, Hasegawa E, Akiyama S. Fibronectin's cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J Biol Chem. 1987 Mar 5;262(7):2957–2967. [PubMed]
  • McKeown-Longo PJ, Mosher DF. Binding of plasma fibronectin to cell layers of human skin fibroblasts. J Cell Biol. 1983 Aug;97(2):466–472. [PMC free article] [PubMed]
  • McKeown-Longo PJ, Mosher DF. Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol. 1985 Feb;100(2):364–374. [PMC free article] [PubMed]
  • Merril CR, Goldman D, Van Keuren ML. Gel protein stains: silver stain. Methods Enzymol. 1984;104:441–447. [PubMed]
  • Morla A, Ruoslahti E. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. J Cell Biol. 1992 Jul;118(2):421–429. [PMC free article] [PubMed]
  • Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193–196. [PubMed]
  • Mosher DF, Sottile J, Wu C, McDonald JA. Assembly of extracellular matrix. Curr Opin Cell Biol. 1992 Oct;4(5):810–818. [PubMed]
  • Quade BJ, McDonald JA. Fibronectin's amino-terminal matrix assembly site is located within the 29-kDa amino-terminal domain containing five type I repeats. J Biol Chem. 1988 Dec 25;263(36):19602–19609. [PubMed]
  • Roman J, LaChance RM, Broekelmann TJ, Kennedy CJ, Wayner EA, Carter WG, McDonald JA. The fibronectin receptor is organized by extracellular matrix fibronectin: implications for oncogenic transformation and for cell recognition of fibronectin matrices. J Cell Biol. 1989 Jun;108(6):2529–2543. [PMC free article] [PubMed]
  • Schwarzbauer JE. Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol. 1991 Jun;113(6):1463–1473. [PMC free article] [PubMed]
  • Schwarzbauer JE, Spencer CS, Wilson CL. Selective secretion of alternatively spliced fibronectin variants. J Cell Biol. 1989 Dec;109(6 Pt 2):3445–3453. [PMC free article] [PubMed]
  • Sottile J, Wiley S. Assembly of amino-terminal fibronectin dimers into the extracellular matrix. J Biol Chem. 1994 Jun 24;269(25):17192–17198. [PubMed]
  • Wennerberg K, Lohikangas L, Gullberg D, Pfaff M, Johansson S, Fässler R. Beta 1 integrin-dependent and -independent polymerization of fibronectin. J Cell Biol. 1996 Jan;132(1-2):227–238. [PMC free article] [PubMed]
  • Wu C, Bauer JS, Juliano RL, McDonald JA. The alpha 5 beta 1 integrin fibronectin receptor, but not the alpha 5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly. J Biol Chem. 1993 Oct 15;268(29):21883–21888. [PubMed]
  • Wu C, Fields AJ, Kapteijn BA, McDonald JA. The role of alpha 4 beta 1 integrin in cell motility and fibronectin matrix assembly. J Cell Sci. 1995 Feb;108(Pt 2):821–829. [PubMed]
  • Wu C, Chung AE, McDonald JA. A novel role for alpha 3 beta 1 integrins in extracellular matrix assembly. J Cell Sci. 1995 Jun;108(Pt 6):2511–2523. [PubMed]
  • Wu C, Keivens VM, O'Toole TE, McDonald JA, Ginsberg MH. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell. 1995 Dec 1;83(5):715–724. [PubMed]
  • Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development. 1993 Dec;119(4):1093–1105. [PubMed]
  • Zhang Q, Checovich WJ, Peters DM, Albrecht RM, Mosher DF. Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J Cell Biol. 1994 Dec;127(5):1447–1459. [PMC free article] [PubMed]
  • Zhang Z, Morla AO, Vuori K, Bauer JS, Juliano RL, Ruoslahti E. The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin. J Cell Biol. 1993 Jul;122(1):235–242. [PMC free article] [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...