Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1996 May 2; 133(4): 819–830.
PMCID: PMC2120834

Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus


Ankyrins are a family of large, membrane-associated proteins that mediate the linkage of the cytoskeleton to a variety of membrane transport and receptor proteins. A repetitive 33-residue motif characteristic of domain I of ankyrin has also been identified in proteins involved with cell cycle control and development. We have cloned and characterized a novel ankyrin isoform, AnkG119 (GenBank accession No. U43965), from the human kidney which lacks part of this repetitive domain and associates in MDCK cells with beta I sigma spectrin and the Golgi apparatus, but not the plasma membrane. Sequence comparison reveals this ankyrin to be an alternative transcript of AnkG, a much larger ankyrin recently cloned from brain. AnkG119 has a predicted size of 119,201 D, and contains a 47-kD domain I consisting of 13 ankyrin repeat units, a 67-kD domain II with a highly conserved spectrin-binding motif, and a truncated 5-kD putative regulatory domain. An AnkG119 cDNA probe hybridized to a 6.0-kb message in human and rat kidney, placenta, and skeletal muscle. An antibody raised to AnkG119 recognized an apparent 116-kD peptide in rat kidney cortical tissue and MDCK cell lysates, and did not react with larger isoforms of ankyrin at 190 and 210 kD in these tissues, nor in bovine brain, nor with ankyrin from human erythrocytes. AnkG119 remains extractable in 0.5% Triton X-100, and assumes a punctuate cytoplasmic distribution in mature MDCK cells, in contrast to the Triton-stable plasma membrane localization of all previously described renal ankyrins. AnkG119 immunocreativity in subconfluent MDCK cells distributes with the Golgi complex in a pattern coincident with beta -COP and beta I sigma spectrin immunoreactivity. A fusion peptide containing residues 669-860 of AnkG119 interacts with beta I sigma 1 spectrin in vitro with a Kd = 4.2 +/- 4.0 ( +/- 2 SD) nM, and avidly binds the beta spectrin in MDCK cell lysates. Collectively, these data identify AnkG119 as a novel small ankyrin that binds and colocalizes with beta I sigma spectrin in the ER and Golgi apparatus, and possible on a subset of endosomes during the early stages of polarity development. We hypothesize that AnkG119 and beta I spectrin form a vesicular Golgi-associated membrane skeleton, promote the organization of protein microdomains within the Golgi and trans-Golgi networks, and contribute to polarized vesicle transport.

Full Text

The Full Text of this article is available as a PDF (3.8M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Axton JM, Shamanski FL, Young LM, Henderson DS, Boyd JB, Orr-Weaver TL. The inhibitor of DNA replication encoded by the Drosophila gene plutonium is a small, ankyrin repeat protein. EMBO J. 1994 Jan 15;13(2):462–470. [PMC free article] [PubMed]
  • Beck KA, Buchanan JA, Malhotra V, Nelson WJ. Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex. J Cell Biol. 1994 Nov;127(3):707–723. [PMC free article] [PubMed]
  • Bennett V. Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J Biol Chem. 1992 May 5;267(13):8703–8706. [PubMed]
  • Bensadoun A, Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. [PubMed]
  • Birkenmeier CS, White RA, Peters LL, Hall EJ, Lux SE, Barker JE. Complex patterns of sequence variation and multiple 5' and 3' ends are found among transcripts of the erythroid ankyrin gene. J Biol Chem. 1993 May 5;268(13):9533–9540. [PubMed]
  • Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins. 1993 Dec;17(4):363–374. [PubMed]
  • Bourguignon LY, Walker G, Suchard SJ, Balazovich K. A lymphoma plasma membrane-associated protein with ankyrin-like properties. J Cell Biol. 1986 Jun;102(6):2115–2124. [PMC free article] [PubMed]
  • Chan W, Kordeli E, Bennett V. 440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons. J Cell Biol. 1993 Dec;123(6 Pt 1):1463–1473. [PMC free article] [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Davis JQ, Bennett V. Brain ankyrin. A membrane-associated protein with binding sites for spectrin, tubulin, and the cytoplasmic domain of the erythrocyte anion channel. J Biol Chem. 1984 Nov 10;259(21):13550–13559. [PubMed]
  • Davis JQ, Bennett V. The anion exchanger and Na+K(+)-ATPase interact with distinct sites on ankyrin in in vitro assays. J Biol Chem. 1990 Oct 5;265(28):17252–17256. [PubMed]
  • Davis J, Davis L, Bennett V. Diversity in membrane binding sites of ankyrins. Brain ankyrin, erythrocyte ankyrin, and processed erythrocyte ankyrin associate with distinct sites in kidney microsomes. J Biol Chem. 1989 Apr 15;264(11):6417–6426. [PubMed]
  • Davis LH, Otto E, Bennett V. Specific 33-residue repeat(s) of erythrocyte ankyrin associate with the anion exchanger. J Biol Chem. 1991 Jun 15;266(17):11163–11169. [PubMed]
  • Devarajan P, Scaramuzzino DA, Morrow JS. Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2965–2969. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Diederich RJ, Matsuno K, Hing H, Artavanis-Tsakonas S. Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway. Development. 1994 Mar;120(3):473–481. [PubMed]
  • Dubreuil RR, Yu J. Ankyrin and beta-spectrin accumulate independently of alpha-spectrin in Drosophila. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10285–10289. [PMC free article] [PubMed]
  • Gallagher PG, Tse WT, Scarpa AL, Lux SE, Forget BG. Large numbers of alternatively spliced isoforms of the regulatory region of human erythrocyte ankyrin. Trans Assoc Am Physicians. 1992;105:268–277. [PubMed]
  • Griffiths G, Pepperkok R, Locker JK, Kreis TE. Immunocytochemical localization of beta-COP to the ER-Golgi boundary and the TGN. J Cell Sci. 1995 Aug;108(Pt 8):2839–2856. [PubMed]
  • Harris AS, Anderson JP, Yurchenco PD, Green LA, Ainger KJ, Morrow JS. Mechanisms of cytoskeletal regulation: functional and antigenic diversity in human erythrocyte and brain beta spectrin. J Cell Biochem. 1986;30(1):51–69. [PubMed]
  • Harris AS, Croall DE, Morrow JS. Calmodulin regulates fodrin susceptibility to cleavage by calcium-dependent protease I. J Biol Chem. 1989 Oct 15;264(29):17401–17408. [PubMed]
  • Kelly RB. Secretory granule and synaptic vesicle formation. Curr Opin Cell Biol. 1991 Aug;3(4):654–660. [PubMed]
  • Kennedy SP, Weed SA, Forget BG, Morrow JS. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. J Biol Chem. 1994 Apr 15;269(15):11400–11408. [PubMed]
  • Koob R, Zimmermann M, Schoner W, Drenckhahn D. Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. Eur J Cell Biol. 1988 Feb;45(2):230–237. [PubMed]
  • Kordeli E, Bennett V. Distinct ankyrin isoforms at neuron cell bodies and nodes of Ranvier resolved using erythrocyte ankyrin-deficient mice. J Cell Biol. 1991 Sep;114(6):1243–1259. [PMC free article] [PubMed]
  • Kordeli E, Davis J, Trapp B, Bennett V. An isoform of ankyrin is localized at nodes of Ranvier in myelinated axons of central and peripheral nerves. J Cell Biol. 1990 Apr;110(4):1341–1352. [PMC free article] [PubMed]
  • Kordeli E, Lambert S, Bennett V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem. 1995 Feb 3;270(5):2352–2359. [PubMed]
  • Kreis TE, Pepperkok R. Coat proteins in intracellular membrane transport. Curr Opin Cell Biol. 1994 Aug;6(4):533–537. [PubMed]
  • Kunimoto M, Otto E, Bennett V. A new 440-kD isoform is the major ankyrin in neonatal rat brain. J Cell Biol. 1991 Dec;115(5):1319–1331. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lambert S, Yu H, Prchal JT, Lawler J, Ruff P, Speicher D, Cheung MC, Kan YW, Palek J. cDNA sequence for human erythrocyte ankyrin. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1730–1734. [PMC free article] [PubMed]
  • Luna EJ, Hitt AL. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. [PubMed]
  • Lux SE, Tse WT, Menninger JC, John KM, Harris P, Shalev O, Chilcote RR, Marchesi SL, Watkins PC, Bennett V, et al. Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature. 1990 Jun 21;345(6277):736–739. [PubMed]
  • Matter K, Mellman I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol. 1994 Aug;6(4):545–554. [PubMed]
  • Mays RW, Siemers KA, Fritz BA, Lowe AW, van Meer G, Nelson WJ. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J Cell Biol. 1995 Sep;130(5):1105–1115. [PMC free article] [PubMed]
  • McLean IW, Nakane PK. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. [PubMed]
  • Michaely P, Bennett V. The membrane-binding domain of ankyrin contains four independently folded subdomains, each comprised of six ankyrin repeats. J Biol Chem. 1993 Oct 25;268(30):22703–22709. [PubMed]
  • Molitoris BA, Dahl R, Geerdes A. Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)-K(+)-ATPase during ischemia. Am J Physiol. 1992 Sep;263(3 Pt 2):F488–F495. [PubMed]
  • Morrow JS, Marchesi VT. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J Cell Biol. 1981 Feb;88(2):463–468. [PMC free article] [PubMed]
  • Morrow JS, Cianci CD, Ardito T, Mann AS, Kashgarian M. Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J Cell Biol. 1989 Feb;108(2):455–465. [PMC free article] [PubMed]
  • Nelson WJ, Veshnock PJ. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1986 Nov;103(5):1751–1765. [PMC free article] [PubMed]
  • Otto E, Kunimoto M, McLaughlin T, Bennett V. Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes. J Cell Biol. 1991 Jul;114(2):241–253. [PMC free article] [PubMed]
  • Pepperkok R, Scheel J, Horstmann H, Hauri HP, Griffiths G, Kreis TE. Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell. 1993 Jul 16;74(1):71–82. [PubMed]
  • Peters LL, John KM, Lu FM, Eicher EM, Higgins A, Yialamas M, Turtzo LC, Otsuka AJ, Lux SE. Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J Cell Biol. 1995 Jul;130(2):313–330. [PMC free article] [PubMed]
  • Peterson GL. Determination of total protein. Methods Enzymol. 1983;91:95–119. [PubMed]
  • Platt OS, Lux SE, Falcone JF. A highly conserved region of human erythrocyte ankyrin contains the capacity to bind spectrin. J Biol Chem. 1993 Nov 15;268(32):24421–24426. [PubMed]
  • Robinson MS. The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol. 1994 Aug;6(4):538–544. [PubMed]
  • Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • Van Why SK, Hildebrandt F, Ardito T, Mann AS, Siegel NJ, Kashgarian M. Induction and intracellular localization of HSP-72 after renal ischemia. Am J Physiol. 1992 Nov;263(5 Pt 2):F769–F775. [PubMed]
  • Weaver DC, Marchesi VT. The structural basis of ankyrin function. I. Identification of two structural domains. J Biol Chem. 1984 May 25;259(10):6165–6169. [PubMed]
  • Weaver DC, Pasternack GR, Marchesi VT. The structural basis of ankyrin function. II. Identification of two functional domains. J Biol Chem. 1984 May 25;259(10):6170–6175. [PubMed]
  • Whitney JA, Gomez M, Sheff D, Kreis TE, Mellman I. Cytoplasmic coat proteins involved in endosome function. Cell. 1995 Dec 1;83(5):703–713. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    NCBI Bookshelf books that cite the current articles.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence and PMC links.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • Pathways + GO
    Pathways + GO
    Pathways and biological systems (BioSystems) that cite the current articles. Citations are from the BioSystems source databases (KEGG and BioCyc).
  • Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...