• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. Feb 1, 1996; 132(3): 291–298.
PMCID: PMC2120716

Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP

Abstract

To investigate the mechanisms of ER-associated protein degradation (ERAD), this process was reconstituted in vitro. Established procedures for post-translational translocation of radiolabeled prepro-alpha factor into isolated yeast microsomes were modified to inhibit glycosylation and to include a posttranslocation "chase" incubation period to monitor degradation. Glycosylation was inhibited with a glyco- acceptor peptide to compete for core carbohydrates, or by using a radio- labeled alpha factor precursor that had been genetically engineered to eliminate all three glycosylation sites. Inhibition of glycosylation led to the production of unglycosylated pro-alpha factor (p alpha F), a processed form of the alpha factor precursor shown to be a substrate of ERAD in vivo. With this system, both glycosylated and unglycosylated forms of pro-alpha factor were stable throughout a 90-min chase incubation. However, the addition of cytosol to the chase incubation reaction induced a selective and rapid degradation of p alpha F. These results directly reflect the behavior of alpha factor precursor in vivo; i.e., p alpha F is a substrate for ERAD, while glycosylated pro- alpha factor is not. Heat inactivation and trypsin treatment of cytosol, as well as addition of ATP gamma S to the chase incubations, led to a stabilization of p alpha F. ERAD was observed in sec12 microsomes, indicating that export of p alpha F via transport vesicles was not required. Furthermore, p alpha F but not glycosylated pro-alpha factor was found in the supernatant of the chase incubation reactions, suggesting a specific transport system for this ERAD substrate. Finally, the degradation of p alpha F was inhibited when microsomes from a yeast strain containing a disrupted calnexin gene were examined. Together, these results indicate that cytosolic protein factor(s), ATP hydrolysis, and calnexin are required for ER-associated protein degradation in yeast, and suggest the cytosol as the site for degradation.

Full Text

The Full Text of this article is available as a PDF (1.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amara JF, Lederkremer G, Lodish HF. Intracellular degradation of unassembled asialoglycoprotein receptor subunits: a pre-Golgi, nonlysosomal endoproteolytic cleavage. J Cell Biol. 1989 Dec;109(6 Pt 2):3315–3324. [PMC free article] [PubMed]
  • Bergeron JJ, Brenner MB, Thomas DY, Williams DB. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994 Mar;19(3):124–128. [PubMed]
  • Blumberg H, Silver PA. A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast. Nature. 1991 Feb 14;349(6310):627–630. [PubMed]
  • Brodsky JL, Schekman R. A Sec63p-BiP complex from yeast is required for protein translocation in a reconstituted proteoliposome. J Cell Biol. 1993 Dec;123(6 Pt 1):1355–1363. [PMC free article] [PubMed]
  • Brodsky JL, Hamamoto S, Feldheim D, Schekman R. Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J Cell Biol. 1993 Jan;120(1):95–102. [PMC free article] [PubMed]
  • Caplan S, Green R, Rocco J, Kurjan J. Glycosylation and structure of the yeast MF alpha 1 alpha-factor precursor is important for efficient transport through the secretory pathway. J Bacteriol. 1991 Jan;173(2):627–635. [PMC free article] [PubMed]
  • Chen C, Bonifacino JS, Yuan LC, Klausner RD. Selective degradation of T cell antigen receptor chains retained in a pre-Golgi compartment. J Cell Biol. 1988 Dec;107(6 Pt 1):2149–2161. [PMC free article] [PubMed]
  • Craig EA, Gambill BD, Nelson RJ. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev. 1993 Jun;57(2):402–414. [PMC free article] [PubMed]
  • Deshaies RJ, Schekman R. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J Cell Biol. 1989 Dec;109(6 Pt 1):2653–2664. [PMC free article] [PubMed]
  • Finger A, Knop M, Wolf DH. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem. 1993 Dec 1;218(2):565–574. [PubMed]
  • Fuller RS, Sterne RE, Thorner J. Enzymes required for yeast prohormone processing. Annu Rev Physiol. 1988;50:345–362. [PubMed]
  • Gething MJ, Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. [PubMed]
  • Gottesman S, Maurizi MR. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev. 1992 Dec;56(4):592–621. [PMC free article] [PubMed]
  • Hammond C, Helenius A. Folding of VSV G protein: sequential interaction with BiP and calnexin. Science. 1994 Oct 21;266(5184):456–458. [PubMed]
  • Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913–917. [PMC free article] [PubMed]
  • Hampton RY, Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol. 1994 Apr;125(2):299–312. [PMC free article] [PubMed]
  • Hansen W, Walter P. Prepro-carboxypeptidase Y and a truncated form of pre-invertase, but not full-length pre-invertase, can be posttranslationally translocated across microsomal vesicle membranes from Saccharomyces cerevisiae. J Cell Biol. 1988 Apr;106(4):1075–1081. [PMC free article] [PubMed]
  • Hansen W, Garcia PD, Walter P. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor. Cell. 1986 May 9;45(3):397–406. [PubMed]
  • Hebert DN, Foellmer B, Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 1995 May 5;81(3):425–433. [PubMed]
  • Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C, Wolf DH. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 1991 Mar;10(3):555–562. [PMC free article] [PubMed]
  • Inoue S, Simoni RD. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase and T cell receptor alpha subunit are differentially degraded in the endoplasmic reticulum. J Biol Chem. 1992 May 5;267(13):9080–9086. [PubMed]
  • Julius D, Schekman R, Thorner J. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell. 1984 Feb;36(2):309–318. [PubMed]
  • Kandror O, Busconi L, Sherman M, Goldberg AL. Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. J Biol Chem. 1994 Sep 23;269(38):23575–23582. [PubMed]
  • Kim PS, Arvan P. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol. 1995 Jan;128(1-2):29–38. [PMC free article] [PubMed]
  • Le A, Steiner JL, Ferrell GA, Shaker JC, Sifers RN. Association between calnexin and a secretion-incompetent variant of human alpha 1-antitrypsin. J Biol Chem. 1994 Mar 11;269(10):7514–7519. [PubMed]
  • Leonard DA, Chen HW. ATP-dependent degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in permeabilized cells. J Biol Chem. 1987 Jun 5;262(16):7914–7919. [PubMed]
  • Lippincott-Schwartz J, Bonifacino JS, Yuan LC, Klausner RD. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell. 1988 Jul 15;54(2):209–220. [PubMed]
  • McCracken AA, Kruse KB. Selective protein degradation in the yeast exocytic pathway. Mol Biol Cell. 1993 Jul;4(7):729–736. [PMC free article] [PubMed]
  • Meigs TE, Simoni RD. Regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in permeabilized cells. J Biol Chem. 1992 Jul 5;267(19):13547–13552. [PubMed]
  • Ou WJ, Cameron PH, Thomas DY, Bergeron JJ. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 Aug 26;364(6440):771–776. [PubMed]
  • Parlati F, Dominguez M, Bergeron JJ, Thomas DY. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem. 1995 Jan 6;270(1):244–253. [PubMed]
  • Pind S, Riordan JR, Williams DB. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1994 Apr 29;269(17):12784–12788. [PubMed]
  • Rassow J, Voos W, Pfanner N. Partner proteins determine multiple functions of Hsp70. Trends Cell Biol. 1995 May;5(5):207–212. [PubMed]
  • Rajagopalan S, Xu Y, Brenner MB. Retention of unassembled components of integral membrane proteins by calnexin. Science. 1994 Jan 21;263(5145):387–390. [PubMed]
  • Römisch K, Schekman R. Distinct processes mediate glycoprotein and glycopeptide export from the endoplasmic reticulum in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7227–7231. [PMC free article] [PubMed]
  • Rothblatt JA, Meyer DI. Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell. 1986 Feb 28;44(4):619–628. [PubMed]
  • Schlenstedt G, Harris S, Risse B, Lill R, Silver PA. A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s. J Cell Biol. 1995 May;129(4):979–988. [PMC free article] [PubMed]
  • Schmitz A, Maintz M, Kehle T, Herzog V. In vivo iodination of a misfolded proinsulin reveals co-localized signals for Bip binding and for degradation in the ER. EMBO J. 1995 Mar 15;14(6):1091–1098. [PMC free article] [PubMed]
  • Sherman MYu, Goldberg AL. Involvement of the chaperonin dnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J. 1992 Jan;11(1):71–77. [PMC free article] [PubMed]
  • Sorger PK, Pelham HR. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 1987 Oct;6(10):3035–3041. [PMC free article] [PubMed]
  • Stafford FJ, Bonifacino JS. A permeabilized cell system identifies the endoplasmic reticulum as a site of protein degradation. J Cell Biol. 1991 Dec;115(5):1225–1236. [PMC free article] [PubMed]
  • Tachibana C, Stevens TH. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol. 1992 Oct;12(10):4601–4611. [PMC free article] [PubMed]
  • Tsao YS, Ivessa NE, Adesnik M, Sabatini DD, Kreibich G. Carboxy terminally truncated forms of ribophorin I are degraded in pre-Golgi compartments by a calcium-dependent process. J Cell Biol. 1992 Jan;116(1):57–67. [PMC free article] [PubMed]
  • Wagner I, Arlt H, van Dyck L, Langer T, Neupert W. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 1994 Nov 1;13(21):5135–5145. [PMC free article] [PubMed]
  • Waters MG, Blobel G. Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J Cell Biol. 1986 May;102(5):1543–1550. [PMC free article] [PubMed]
  • Wikström L, Lodish HF. Endoplasmic reticulum degradation of a subunit of the asialoglycoprotein receptor in vitro. Vesicular transport from endoplasmic reticulum is unnecessary. J Biol Chem. 1992 Jan 5;267(1):5–8. [PubMed]
  • Wileman T, Carson GR, Concino M, Ahmed A, Terhorst C. The gamma and epsilon subunits of the CD3 complex inhibit pre-Golgi degradation of newly synthesized T cell antigen receptors. J Cell Biol. 1990 Apr;110(4):973–986. [PMC free article] [PubMed]
  • Wileman T, Kane LP, Terhorst C. Degradation of T-cell receptor chains in the endoplasmic reticulum is inhibited by inhibitors of cysteine proteases. Cell Regul. 1991 Sep;2(9):753–765. [PMC free article] [PubMed]
  • Wuestehube LJ, Schekman RW. Reconstitution of transport from endoplasmic reticulum to Golgi complex using endoplasmic reticulum-enriched membrane fraction from yeast. Methods Enzymol. 1992;219:124–136. [PubMed]
  • Zhang Q, Tector M, Salter RD. Calnexin recognizes carbohydrate and protein determinants of class I major histocompatibility complex molecules. J Biol Chem. 1995 Feb 24;270(8):3944–3948. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...