Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1996 Jan 1; 132(1): 195–210.
PMCID: PMC2120709

Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype


The development of the skeleton requires the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The activities of these two cell types are likely to be regulated by TGF-beta, which is abundant in bone matrix. We have used transgenic mice to evaluate the role of TGF-beta 2 in bone development and turnover. Osteoblast- specific overexpression of TGF-beta 2 from the osteocalcin promoter resulted in progressive bone loss associated with increases in osteoblastic matrix deposition and osteoclastic bone resorption. This phenotype closely resembles the bone abnormalities seen in human hyperparathyroidism and osteoporosis. Furthermore, a high level of TGF- beta 2 overexpression resulted in defective bone mineralization and severe hypoplasia of the clavicles, a hallmark of the developmental disease cleidocranial dysplasia. Our results suggest that TGF-beta 2 functions as a local positive regulator of bone remodeling and that alterations in TGF-beta 2 synthesis by bone cells, or in their responsiveness to TGF-beta 2, may contribute to the pathogenesis of metabolic bone disease.

Full Text

The Full Text of this article is available as a PDF (14M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Araki N, Robinson FD, Nishimoto SK. Rapid and sensitive method of quantitation of bone gla protein mRNA using competitive polymerase chain reaction. J Bone Miner Res. 1993 Mar;8(3):313–322. [PubMed]
  • Baker AR, Hollingshead PG, Pitts-Meek S, Hansen S, Taylor R, Stewart TA. Osteoblast-specific expression of growth hormone stimulates bone growth in transgenic mice. Mol Cell Biol. 1992 Dec;12(12):5541–5547. [PMC free article] [PubMed]
  • Bonewald LF, Dallas SL. Role of active and latent transforming growth factor beta in bone formation. J Cell Biochem. 1994 Jul;55(3):350–357. [PubMed]
  • Bronckers AL, Gay S, Dimuzio MT, Butler WT. Immunolocalization of gamma-carboxyglutamic acid containing proteins in developing rat bones. Coll Relat Res. 1985 Jun;5(3):273–281. [PubMed]
  • Brunner AM, Marquardt H, Malacko AR, Lioubin MN, Purchio AF. Site-directed mutagenesis of cysteine residues in the pro region of the transforming growth factor beta 1 precursor. Expression and characterization of mutant proteins. J Biol Chem. 1989 Aug 15;264(23):13660–13664. [PubMed]
  • Centrella M, Horowitz MC, Wozney JM, McCarthy TL. Transforming growth factor-beta gene family members and bone. Endocr Rev. 1994 Feb;15(1):27–39. [PubMed]
  • Centrella M, McCarthy TL, Canalis E. Parathyroid hormone modulates transforming growth factor beta activity and binding in osteoblast-enriched cell cultures from fetal rat parietal bone. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5889–5893. [PMC free article] [PubMed]
  • Chenu C, Pfeilschifter J, Mundy GR, Roodman GD. Transforming growth factor beta inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5683–5687. [PMC free article] [PubMed]
  • de Martin R, Haendler B, Hofer-Warbinek R, Gaugitsch H, Wrann M, Schlüsener H, Seifert JM, Bodmer S, Fontana A, Hofer E. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO J. 1987 Dec 1;6(12):3673–3677. [PMC free article] [PubMed]
  • Dieudonné SC, Foo P, van Zoelen EJ, Burger EH. Inhibiting and stimulating effects of TGF-beta 1 on osteoclastic bone resorption in fetal mouse bone organ cultures. J Bone Miner Res. 1991 May;6(5):479–487. [PubMed]
  • Engler-Blum G, Meier M, Frank J, Müller GA. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem. 1993 May 1;210(2):235–244. [PubMed]
  • Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R. Toward a molecular understanding of skeletal development. Cell. 1995 Feb 10;80(3):371–378. [PubMed]
  • Finkelman RD, Bell NH, Strong DD, Demers LM, Baylink DJ. Ovariectomy selectively reduces the concentration of transforming growth factor beta in rat bone: implications for estrogen deficiency-associated bone loss. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12190–12193. [PMC free article] [PubMed]
  • Finkelman RD, Linkhart TA, Mohan S, Lau KH, Baylink DJ, Bell NH. Vitamin D deficiency causes a selective reduction in deposition of transforming growth factor beta in rat bone: possible mechanism for impaired osteoinduction. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3657–3660. [PMC free article] [PubMed]
  • Groot CG, Danes JK, Blok J, Hoogendijk A, Hauschka PV. Light and electron microscopic demonstration of osteocalcin antigenicity in embryonic and adult rat bone. Bone. 1986;7(5):379–385. [PubMed]
  • Hall BK. The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick. J Embryol Exp Morphol. 1986 Apr;93:133–152. [PubMed]
  • Hattersley G, Chambers TJ. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function. J Bone Miner Res. 1991 Feb;6(2):165–172. [PubMed]
  • Huang SS, O'Grady P, Huang JS. Human transforming growth factor beta.alpha 2-macroglobulin complex is a latent form of transforming growth factor beta. J Biol Chem. 1988 Jan 25;263(3):1535–1541. [PubMed]
  • Joyce ME, Roberts AB, Sporn MB, Bolander ME. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol. 1990 Jun;110(6):2195–2207. [PMC free article] [PubMed]
  • Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 1991 Aug 11;19(15):4293–4293. [PMC free article] [PubMed]
  • Lawrence DA, Pircher R, Jullien P. Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions. Biochem Biophys Res Commun. 1985 Dec 31;133(3):1026–1034. [PubMed]
  • Lewis DB, Liggitt HD, Effmann EL, Motley ST, Teitelbaum SL, Jepsen KJ, Goldstein SA, Bonadio J, Carpenter J, Perlmutter RM. Osteoporosis induced in mice by overproduction of interleukin 4. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11618–11622. [PMC free article] [PubMed]
  • Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995 Feb 2;332(5):305–311. [PubMed]
  • Massagué J, Cheifetz S, Endo T, Nadal-Ginard B. Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8206–8210. [PMC free article] [PubMed]
  • McSheehy PM, Chambers TJ. Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology. 1986 Feb;118(2):824–828. [PubMed]
  • Miller DA, Lee A, Pelton RW, Chen EY, Moses HL, Derynck R. Murine transforming growth factor-beta 2 cDNA sequence and expression in adult tissues and embryos. Mol Endocrinol. 1989 Jul;3(7):1108–1114. [PubMed]
  • Noda M, Camilliere JJ. In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology. 1989 Jun;124(6):2991–2994. [PubMed]
  • O'Connor-McCourt MD, Wakefield LM. Latent transforming growth factor-beta in serum. A specific complex with alpha 2-macroglobulin. J Biol Chem. 1987 Oct 15;262(29):14090–14099. [PubMed]
  • O'Hare K, Benoist C, Breathnach R. Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1527–1531. [PMC free article] [PubMed]
  • Olson EN, Sternberg E, Hu JS, Spizz G, Wilcox C. Regulation of myogenic differentiation by type beta transforming growth factor. J Cell Biol. 1986 Nov;103(5):1799–1805. [PMC free article] [PubMed]
  • Oursler MJ, Cortese C, Keeting P, Anderson MA, Bonde SK, Riggs BL, Spelsberg TC. Modulation of transforming growth factor-beta production in normal human osteoblast-like cells by 17 beta-estradiol and parathyroid hormone. Endocrinology. 1991 Dec;129(6):3313–3320. [PubMed]
  • Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994 Jul;55(3):273–286. [PubMed]
  • Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991 Nov;115(4):1091–1105. [PMC free article] [PubMed]
  • Pfeilschifter J, Mundy GR. Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2024–2028. [PMC free article] [PubMed]
  • Pfeilschifter J, Seyedin SM, Mundy GR. Transforming growth factor beta inhibits bone resorption in fetal rat long bone cultures. J Clin Invest. 1988 Aug;82(2):680–685. [PMC free article] [PubMed]
  • Pfeilschifter J, Laukhuf F, Müller-Beckmann B, Blum WF, Pfister T, Ziegler R. Parathyroid hormone increases the concentration of insulin-like growth factor-I and transforming growth factor beta 1 in rat bone. J Clin Invest. 1995 Aug;96(2):767–774. [PMC free article] [PubMed]
  • Poli V, Balena R, Fattori E, Markatos A, Yamamoto M, Tanaka H, Ciliberto G, Rodan GA, Costantini F. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994 Mar 1;13(5):1189–1196. [PMC free article] [PubMed]
  • Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB. Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol. 1987 Jul;105(1):457–463. [PMC free article] [PubMed]
  • Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int. 1981;33(4):349–351. [PubMed]
  • Rosen D, Miller SC, DeLeon E, Thompson AY, Bentz H, Mathews M, Adams S. Systemic administration of recombinant transforming growth factor beta 2 (rTGF-beta 2) stimulates parameters of cancellous bone formation in juvenile and adult rats. Bone. 1994 May-Jun;15(3):355–359. [PubMed]
  • Sandberg M, Vuorio T, Hirvonen H, Alitalo K, Vuorio E. Enhanced expression of TGF-beta and c-fos mRNAs in the growth plates of developing human long bones. Development. 1988 Mar;102(3):461–470. [PubMed]
  • Schneider HG, Michelangeli VP, Frampton RJ, Grogan JL, Ikeda K, Martin TJ, Findlay DM. Transforming growth factor-beta modulates receptor binding of calciotropic hormones and G protein-mediated adenylate cyclase responses in osteoblast-like cells. Endocrinology. 1992 Sep;131(3):1383–1389. [PubMed]
  • Seitz PK, Zhu BT, Cooper CW. Effect of transforming growth factor beta on parathyroid hormone receptor binding and cAMP formation in rat osteosarcoma cells. J Bone Miner Res. 1992 May;7(5):541–546. [PubMed]
  • Seyedin SM, Thomas TC, Thompson AY, Rosen DM, Piez KA. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2267–2271. [PMC free article] [PubMed]
  • Sillence DO, Ritchie HE, Selby PB. Animal model: skeletal anomalies in mice with cleidocranial dysplasia. Am J Med Genet. 1987 May;27(1):75–85. [PubMed]
  • Tashjian AH, Jr, Voelkel EF, Lazzaro M, Singer FR, Roberts AB, Derynck R, Winkler ME, Levine L. Alpha and beta human transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4535–4538. [PMC free article] [PubMed]
  • Tran S, Hall BK. Growth of the clavicle and development of clavicular secondary cartilage in the embryonic mouse. Acta Anat (Basel) 1989;135(3):200–207. [PubMed]
  • Vermeulen AH, Vermeer C, Bosman FT. Histochemical detection of osteocalcin in normal and pathological human bone. J Histochem Cytochem. 1989 Oct;37(10):1503–1508. [PubMed]
  • Weibel ER. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. [PubMed]
  • Whyte MP, Bergfeld MA, Murphy WA, Avioli LV, Teitelbaum SL. Postmenopausal osteoporosis. A heterogeneous disorder as assessed by histomorphometric analysis of Iliac crest bone from untreated patients. Am J Med. 1982 Feb;72(2):193–202. [PubMed]
  • Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA. Skeletal alterations in ovariectomized rats. Calcif Tissue Int. 1985 May;37(3):324–328. [PubMed]
  • Wronski TJ, Walsh CC, Ignaszewski LA. Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone. 1986;7(2):119–123. [PubMed]
  • Yee JA, Yan L, Dominguez JC, Allan EH, Martin TJ. Plasminogen-dependent activation of latent transforming growth factor beta (TGF beta) by growing cultures of osteoblast-like cells. J Cell Physiol. 1993 Dec;157(3):528–534. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...