Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1995 Dec 1; 131(5): 1261–1273.
PMCID: PMC2120638

The cell cycle-dependent localization of the CP190 centrosomal protein is determined by the coordinate action of two separable domains


CP190, a protein of 1,096 amino acids from Drosophila melanogaster, oscillates in a cell cycle-specific manner between the nucleus during interphase, and the centrosome during mitosis. To characterize the regions of CP190 responsible for its dynamic behavior, we injected rhodamine-labeled fusion proteins spanning most of CP190 into early Drosophila embryos, where their localizations were characterized using time-lapse fluorescence confocal microscopy. A single bipartite 19- amino acid nuclear localization signal was detected that causes nuclear localization. Robust centrosomal localization is conferred by a separate region of 124 amino acids; two adjacent, nonoverlapping fusion proteins containing distinct portions of this region show weaker centrosomal localization. Fusion proteins that contain both nuclear and centrosomal localization sequences oscillate between the nucleus and the centrosome in a manner identical to native CP190. Fusion proteins containing only the centrosome localization sequence are found at centrosomes throughout the cell cycle, suggesting that CP190 is actively recruited away from the centrosome by its movement into the nucleus during interphase. Both native and bacterially expressed CP190 cosediment with microtubules in vitro. Tests with fusion proteins show that the domain responsible for microtubule binding overlaps the domain required for centrosomal localization. CP60, a protein identified by its association with CP190, also localizes to centrosomes and to nuclei in a cell cycle-dependent manner. Experiments in which colchicine is used to depolymerize microtubules in the early Drosophila embryo demonstrate that both CP190 and CP60 are able to attain and maintain their centrosomal localization in the absence of microtubules.

Full Text

The Full Text of this article is available as a PDF (5.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aizawa H, Emori Y, Mori A, Murofushi H, Sakai H, Suzuki K. Functional analyses of the domain structure of microtubule-associated protein-4 (MAP-U). J Biol Chem. 1991 May 25;266(15):9841–9846. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Dingwall C, Laskey RA. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. [PubMed]
  • Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell. 1994 Feb 25;76(4):639–650. [PubMed]
  • Endow SA, Chandra R, Komma DJ, Yamamoto AH, Salmon ED. Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis. J Cell Sci. 1994 Apr;107(Pt 4):859–867. [PubMed]
  • Foe VE, Alberts BM. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci. 1983 May;61:31–70. [PubMed]
  • Frasch M, Glover DM, Saumweber H. Nuclear antigens follow different pathways into daughter nuclei during mitosis in early Drosophila embryos. J Cell Sci. 1986 Jun;82:155–172. [PubMed]
  • Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. [PubMed]
  • Himmler A, Drechsel D, Kirschner MW, Martin DW., Jr Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol. 1989 Apr;9(4):1381–1388. [PMC free article] [PubMed]
  • Irminger-Finger I, Laymon RA, Goldstein LS. Analysis of the primary sequence and microtubule-binding region of the Drosophila 205K MAP. J Cell Biol. 1990 Dec;111(6 Pt 1):2563–2572. [PMC free article] [PubMed]
  • Kallajoki M, Weber K, Osborn M. A 210 kDa nuclear matrix protein is a functional part of the mitotic spindle; a microinjection study using SPN monoclonal antibodies. EMBO J. 1991 Nov;10(11):3351–3362. [PMC free article] [PubMed]
  • Kalpin RF, Daily DR, Sullivan W. Use of dextran beads for live analysis of the nuclear division and nuclear envelope breakdown/reformation cycles in the Drosophila embryo. Biotechniques. 1994 Oct;17(4):730–733. [PubMed]
  • Kalt A, Schliwa M. Molecular components of the centrosome. Trends Cell Biol. 1993 Apr;3(4):118–128. [PubMed]
  • Kellogg DR, Alberts BM. Purification of a multiprotein complex containing centrosomal proteins from the Drosophila embryo by chromatography with low-affinity polyclonal antibodies. Mol Biol Cell. 1992 Jan;3(1):1–11. [PMC free article] [PubMed]
  • Kellogg DR, Field CM, Alberts BM. Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. J Cell Biol. 1989 Dec;109(6 Pt 1):2977–2991. [PMC free article] [PubMed]
  • Kellogg DR, Moritz M, Alberts BM. The centrosome and cellular organization. Annu Rev Biochem. 1994;63:639–674. [PubMed]
  • Kimble M, Kuriyama R. Functional components of microtubule-organizing centers. Int Rev Cytol. 1992;136:1–50. [PubMed]
  • Lewis SA, Wang DH, Cowan NJ. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science. 1988 Nov 11;242(4880):936–939. [PubMed]
  • Mazia D. The chromosome cycle and the centrosome cycle in the mitotic cycle. Int Rev Cytol. 1987;100:49–92. [PubMed]
  • Mitchison T, Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. [PubMed]
  • Morris CF, Hama-Inaba H, Mace D, Sinha NK, Alberts B. Purification of the gene 43, 44, 45, and 62 proteins of the bacteriophage T4 DNA replication apparatus. J Biol Chem. 1979 Jul 25;254(14):6787–6796. [PubMed]
  • Noble M, Lewis SA, Cowan NJ. The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau. J Cell Biol. 1989 Dec;109(6 Pt 2):3367–3376. [PMC free article] [PubMed]
  • Price CM, Pettijohn DE. Redistribution of the nuclear mitotic apparatus protein (NuMA) during mitosis and nuclear assembly. Properties of purified NuMA protein. Exp Cell Res. 1986 Oct;166(2):295–311. [PubMed]
  • Raff JW, Kellogg DR, Alberts BM. Drosophila gamma-tubulin is part of a complex containing two previously identified centrosomal MAPs. J Cell Biol. 1993 May;121(4):823–835. [PMC free article] [PubMed]
  • Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol. 1994 Oct;165(2):299–335. [PubMed]
  • Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. [PubMed]
  • Stearns T, Evans L, Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991 May 31;65(5):825–836. [PubMed]
  • Theurkauf WE. Behavior of structurally divergent alpha-tubulin isotypes during Drosophila embryogenesis: evidence for post-translational regulation of isotype abundance. Dev Biol. 1992 Nov;154(1):205–217. [PubMed]
  • Tousson A, Zeng C, Brinkley BR, Valdivia MM. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation. J Cell Biol. 1991 Feb;112(3):427–440. [PMC free article] [PubMed]
  • Vorobjev IA, Nadezhdina ES. The centrosome and its role in the organization of microtubules. Int Rev Cytol. 1987;106:227–293. [PubMed]
  • Whitfield WG, Millar SE, Saumweber H, Frasch M, Glover DM. Cloning of a gene encoding an antigen associated with the centrosome in Drosophila. J Cell Sci. 1988 Apr;89(Pt 4):467–480. [PubMed]
  • Whitfield WG, Chaplin MA, Oegema K, Parry H, Glover DM. The 190 kDa centrosome-associated protein of Drosophila melanogaster contains four zinc finger motifs and binds to specific sites on polytene chromosomes. J Cell Sci. 1995 Nov;108(Pt 11):3377–3387. [PubMed]
  • Yang JT, Laymon RA, Goldstein LS. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell. 1989 Mar 10;56(5):879–889. [PubMed]
  • Zheng Y, Jung MK, Oakley BR. Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell. 1991 May 31;65(5):817–823. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.
  • Taxonomy
    Taxonomy records associated with the current articles through taxonomic information on related molecular database records (Nucleotide, Protein, Gene, SNP, Structure).
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...