Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. Aug 1, 1995; 130(3): 687–700.
PMCID: PMC2120535

Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae

Abstract

We have used time-lapse digital- and video-enhanced differential interference contrast (DE-DIC, VE-DIC) microscopy to study the role of dynein in spindle and nuclear dynamics in the yeast Saccharomyces cerevisiae. The real-time analysis reveals six stages in the spindle cycle. Anaphase B onset appears marked by a rapid phase of spindle elongation, simultaneous with nuclear migration into the daughter cell. The onset and kinetics of rapid spindle elongation are identical in wild type and dynein mutants. In the absence of dynein the nucleus does not migrate as close to the neck as in wild-type cells and initial spindle elongation is confined primarily to the mother cell. Rapid oscillations of the elongating spindle between the mother and bud are observed in wild-type cells, followed by a slower growth phase until the spindle reaches its maximal length. This stage is protracted in the dynein mutants and devoid of oscillatory motion. Thus dynein is required for rapid penetration of the nucleus into the bud and anaphase B spindle dynamics. Genetic analysis reveals that in the absence of a functional central spindle (ndcl), dynein is essential for chromosome movement into the bud. Immunofluorescent localization of dynein-beta- galactosidase fusion proteins reveals that dynein is associated with spindle pole bodies and the cell cortex: with spindle pole body localization dependent on intact microtubules. A kinetic analysis of nuclear movement also revealed that cytokinesis is delayed until nuclear translocation is completed, indicative of a surveillance pathway monitoring nuclear transit into the bud.

Full Text

The Full Text of this article is available as a PDF (3.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Byers B, Goetsch L. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):511–523. [PMC free article] [PubMed]
  • Eshel D, Urrestarazu LA, Vissers S, Jauniaux JC, van Vliet-Reedijk JC, Planta RJ, Gibbons IR. Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11172–11176. [PMC free article] [PubMed]
  • Jacobs CW, Adams AE, Szaniszlo PJ, Pringle JR. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1988 Oct;107(4):1409–1426. [PMC free article] [PubMed]
  • Jones HD, Schliwa M, Drubin DG. Video microscopy of organelle inheritance and motility in budding yeast. Cell Motil Cytoskeleton. 1993;25(2):129–142. [PubMed]
  • Koning AJ, Lum PY, Williams JM, Wright R. DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton. 1993;25(2):111–128. [PubMed]
  • Koonce MP, Grissom PM, McIntosh JR. Dynein from Dictyostelium: primary structure comparisons between a cytoplasmic motor enzyme and flagellar dynein. J Cell Biol. 1992 Dec;119(6):1597–1604. [PMC free article] [PubMed]
  • Li YY, Yeh E, Hays T, Bloom K. Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10096–10100. [PMC free article] [PubMed]
  • Mitchison TJ, Salmon ED. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Cell Biol. 1992 Nov;119(3):569–582. [PMC free article] [PubMed]
  • Myers AM, Tzagoloff A, Kinney DM, Lusty CJ. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45(3):299–310. [PubMed]
  • Palmer RE, Koval M, Koshland D. The dynamics of chromosome movement in the budding yeast Saccharomyces cerevisiae. J Cell Biol. 1989 Dec;109(6 Pt 2):3355–3366. [PMC free article] [PubMed]
  • Palmer RE, Sullivan DS, Huffaker T, Koshland D. Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol. 1992 Nov;119(3):583–593. [PMC free article] [PubMed]
  • Paschal BM, Holzbaur EL, Pfister KK, Clark S, Meyer DI, Vallee RB. Characterization of a 50-kDa polypeptide in cytoplasmic dynein preparations reveals a complex with p150GLUED and a novel actin. J Biol Chem. 1993 Jul 15;268(20):15318–15323. [PubMed]
  • Plamann M, Minke PF, Tinsley JH, Bruno KS. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol. 1994 Oct;127(1):139–149. [PMC free article] [PubMed]
  • Pringle JR, Preston RA, Adams AE, Stearns T, Drubin DG, Haarer BK, Jones EW. Fluorescence microscopy methods for yeast. Methods Cell Biol. 1989;31:357–435. [PubMed]
  • Salmon ED, Inoué T, Desai A, Murray AW. High resolution multimode digital imaging system for mitosis studies in vivo and in vitro. Biol Bull. 1994 Oct;187(2):231–232. [PubMed]
  • Saunders WS, Koshland D, Eshel D, Gibbons IR, Hoyt MA. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J Cell Biol. 1995 Feb;128(4):617–624. [PMC free article] [PubMed]
  • Schroer TA. New insights into the interaction of cytoplasmic dynein with the actin-related protein, Arp1. J Cell Biol. 1994 Oct;127(1):1–4. [PMC free article] [PubMed]
  • Skibbens RV, Skeen VP, Salmon ED. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol. 1993 Aug;122(4):859–875. [PMC free article] [PubMed]
  • Sullivan DS, Huffaker TC. Astral microtubules are not required for anaphase B in Saccharomyces cerevisiae. J Cell Biol. 1992 Oct;119(2):379–388. [PMC free article] [PubMed]
  • Thomas JH, Botstein D. A gene required for the separation of chromosomes on the spindle apparatus in yeast. Cell. 1986 Jan 17;44(1):65–76. [PubMed]
  • Vallen EA, Scherson TY, Roberts T, van Zee K, Rose MD. Asymmetric mitotic segregation of the yeast spindle pole body. Cell. 1992 May 1;69(3):505–515. [PubMed]
  • Winey M, Hoyt MA, Chan C, Goetsch L, Botstein D, Byers B. NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J Cell Biol. 1993 Aug;122(4):743–751. [PMC free article] [PubMed]
  • Xiang X, Beckwith SM, Morris NR. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2100–2104. [PMC free article] [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...