• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. Jan 2, 1993; 120(2): 477–483.
PMCID: PMC2119523

Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2

Abstract

The tight junction is an essential element of the intercellular junctional complex; yet its protein composition is not fully understood. At present, only three proteins, ZO-1 (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766), cingulin (Citi, S., H. Sabanay, R. Jakes, B. Geiger, and J. Kendrick-Jones. 1988. Nature (Lond.). 333:272-275) and ZO-2 (Gumbiner, B., T. Lowenkopf, and D. Apatira. 1991. Proc. Natl. Acad. Sci. USA. 88:3460-3464) are known to be associated with the tight junction. We have generated a monoclonal antibody (7H6) against a bile canaliculus-rich membrane fraction prepared from rat liver. This 7H6 antigen was preferentially localized by immunofluorescence at the junctional complex regions of hepatocytes and other epithelia, and 7H6- affiliated gold particles were shown electron microscopically to localize at the periphery of tight junctions. Immunoblot analysis of a bile canaliculus-rich fraction of rat liver using 7H6, anti-ZO-1 antibody (R26.4C), and anti-cingulin antibody revealed that 7H6 reacted selectively with a 155-kD protein, whereas R26.4C reacted only with a 225-kD protein. Anti-cingulin antibody reacted solely with 140 and 108- kD proteins, indicating that the protein recognized by 7H6 is immunologically different from ZO-1 and cingulin. Immunoprecipitation of detergent extracts obtained from metabolically labeled MDCK cells with R26.4C coprecipitated a 160-kD protein, which corresponds to ZO-2, with ZO-1. However, 7H6 did not react with the 160-kD protein. These results strongly suggest that the 7H6 antibody recognizes a novel tight junction-associated protein different from ZO-1, cingulin and ZO-2.

Full Text

The Full Text of this article is available as a PDF (2.6M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anderson JM, Stevenson BR, Jesaitis LA, Goodenough DA, Mooseker MS. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol. 1988 Apr;106(4):1141–1149. [PMC free article] [PubMed]
  • Anderson JM, Van Itallie CM, Peterson MD, Stevenson BR, Carew EA, Mooseker MS. ZO-1 mRNA and protein expression during tight junction assembly in Caco-2 cells. J Cell Biol. 1989 Sep;109(3):1047–1056. [PMC free article] [PubMed]
  • Citi S, Kendrick-Jones J. Regulation in vitro of brush border myosin by light chain phosphorylation. J Mol Biol. 1986 Apr 5;188(3):369–382. [PubMed]
  • Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J. Cingulin, a new peripheral component of tight junctions. Nature. 1988 May 19;333(6170):272–276. [PubMed]
  • Citi S, Sabanay H, Kendrick-Jones J, Geiger B. Cingulin: characterization and localization. J Cell Sci. 1989 May;93(Pt 1):107–122. [PubMed]
  • Citi S, Amorosi A, Franconi F, Giotti A, Zampi G. Cingulin, a specific protein component of tight junctions, is expressed in normal and neoplastic human epithelial tissues. Am J Pathol. 1991 Apr;138(4):781–789. [PMC free article] [PubMed]
  • Claude P, Goodenough DA. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. [PMC free article] [PubMed]
  • Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978 Mar 10;39(2-3):219–232. [PubMed]
  • Dragsten PR, Blumenthal R, Handler JS. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature. 1981 Dec 24;294(5843):718–722. [PubMed]
  • FARQUHAR MG, PALADE GE. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. [PMC free article] [PubMed]
  • Goodenough DA, Revel JP. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. [PMC free article] [PubMed]
  • Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol. 1987 Dec;253(6 Pt 1):C749–C758. [PubMed]
  • Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3460–3464. [PMC free article] [PubMed]
  • Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. [PubMed]
  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. [PubMed]
  • Martínez-Palomo A, Erlij D. Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4487–4491. [PMC free article] [PubMed]
  • Matsudaira PT, Burgess DR. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. [PubMed]
  • Pinto da Silva P, Kachar B. On tight-junction structure. Cell. 1982 Mar;28(3):441–450. [PubMed]
  • Roman LM, Hubbard AL. A domain-specific marker for the hepatocyte plasma membrane. II. Ultrastructural localization of leucine aminopeptidase to the bile canalicular domain of isolated rat liver plasma membranes. J Cell Biol. 1984 Apr;98(4):1488–1496. [PMC free article] [PubMed]
  • Schnabel E, Anderson JM, Farquhar MG. The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol. 1990 Sep;111(3):1255–1263. [PMC free article] [PubMed]
  • Song CS, Rubin W, Rifkind AB, Kappas A. Plasma membranes of the rat liver. Isolation and enzymatic characterization of a fraction rich in bile canaliculi. J Cell Biol. 1969 Apr;41(1):124–132. [PMC free article] [PubMed]
  • Staehelin LA. Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci. 1973 Nov;13(3):763–786. [PubMed]
  • Stevenson BR, Goodenough DA. Zonulae occludentes in junctional complex-enriched fractions from mouse liver: preliminary morphological and biochemical characterization. J Cell Biol. 1984 Apr;98(4):1209–1221. [PMC free article] [PubMed]
  • Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986 Sep;103(3):755–766. [PMC free article] [PubMed]
  • Stevenson BR, Anderson JM, Bullivant S. The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem. 1988 Oct;83(2):129–145. [PubMed]
  • Stevenson BR, Heintzelman MB, Anderson JM, Citi S, Mooseker MS. ZO-1 and cingulin: tight junction proteins with distinct identities and localizations. Am J Physiol. 1989 Oct;257(4 Pt 1):C621–C628. [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • van Meer G, Gumbiner B, Simons K. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature. 1986 Aug 14;322(6080):639–641. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • PubMed
    PubMed
    PubMed citations for these articles