Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1989 Mar 1; 108(3): 1127–1138.
PMCID: PMC2115403

New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally


We have established and characterized a spontaneously immortalized, nontumorigenic mouse mammary cell line, designated IM-2. IM-2 cells synthesize large amounts of the milk protein beta-casein upon addition of lactogenic hormones. The induction of beta-casein occurs rapidly and does not require any exogenous extracellular matrix components. The IM- 2 cell line is morphologically heterogeneous and could be separated into cell clones with epithelial and fibroblastic characteristics. In monoculture, none of the epithelial clones could be induced to synthesize caseins. Coculture of epithelial and fibroblastic clones, however, rendered the epithelial cells competent to differentiate functionally; the addition of lactogenic hormones to these cocultures resulted in the synthesis of beta-casein in amounts comparable to that seen with the original IM-2 line. Using this unique cell system, we have investigated the interrelationships between different steps in differentiation leading to hormone-induced casein production. Independent of hormones, epithelial-fibroblastic cell contacts led to the formation of characteristic structures showing the deposition of laminin. We found that the epithelial cells located in these structures also exhibited significantly increased levels of cytokeratin intermediate filament polypeptides. Double immunofluorescence revealed that the cells inducible by hormones to synthesize casein, colocalized exactly with the areas of laminin deposition and with the cells showing greatly intensified cytokeratin expression. These results suggest that hormone-independent differentiation events take place in response to intercellular epithelial-mesenchymal contacts. These events in turn bring about a state of competence for functional differentiation after lactogenic hormonal stimulation.

Full Text

The Full Text of this article is available as a PDF (7.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anderson LW, Danielson KG, Hosick HL. New cell line. Epithelial cell line and subline established from premalignant mouse mammary tissue. In Vitro. 1979 Nov;15(11):841–843. [PubMed]
  • Asch HL, Asch BB. Expression of keratins and other cytoskeletal proteins in mouse mammary epithelium during the normal developmental cycle and primary culture. Dev Biol. 1985 Feb;107(2):470–482. [PubMed]
  • Aviv H, Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. [PMC free article] [PubMed]
  • Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 1988 Jul;7(7):2089–2095. [PMC free article] [PubMed]
  • Ben-Ze'ev A. Differential control of cytokeratins and vimentin synthesis by cell-cell contact and cell spreading in cultured epithelial cells. J Cell Biol. 1984 Oct;99(4 Pt 1):1424–1433. [PMC free article] [PubMed]
  • Blum JL, Wicha MS. Role of the cytoskeleton in laminin induced mammary gene expression. J Cell Physiol. 1988 Apr;135(1):13–22. [PubMed]
  • Bonneau AM, Darveau A, Sonenberg N. Effect of viral infection on host protein synthesis and mRNA association with the cytoplasmic cytoskeletal structure. J Cell Biol. 1985 Apr;100(4):1209–1218. [PMC free article] [PubMed]
  • Campbell SM, Taha MM, Medina D, Rosen JM. A clonal derivative of mammary epithelial cell line COMMA-D retains stem cell characteristics of unique morphological and functional heterogeneity. Exp Cell Res. 1988 Jul;177(1):109–121. [PubMed]
  • Cepko CL, Roberts BE, Mulligan RC. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell. 1984 Jul;37(3):1053–1062. [PubMed]
  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. [PubMed]
  • Cornbrooks CJ, Carey DJ, McDonald JA, Timpl R, Bunge RP. In vivo and in vitro observations on laminin production by Schwann cells. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3850–3854. [PMC free article] [PubMed]
  • Danielson KG, Oborn CJ, Durban EM, Butel JS, Medina D. Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3756–3760. [PMC free article] [PubMed]
  • Durban EM, Medina D, Butel JS. Comparative analysis of casein synthesis during mammary cell differentiation in collagen and mammary gland development in vivo. Dev Biol. 1985 Jun;109(2):288–298. [PubMed]
  • Emerman JT, Pitelka DR. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro. 1977 May;13(5):316–328. [PubMed]
  • Enami J, Nandi S. A sensitive radioimmunoassay for a component of mouse casein. J Immunol Methods. 1977;18(3-4):235–244. [PubMed]
  • Engel J, Odermatt E, Engel A, Madri JA, Furthmayr H, Rohde H, Timpl R. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol. 1981 Jul 25;150(1):97–120. [PubMed]
  • Franke WW, Mayer D, Schmid E, Denk H, Borenfreund E. Differences of expression of cytoskeletal proteins in cultured rat hepatocytes and hepatoma cells. Exp Cell Res. 1981 Aug;134(2):345–365. [PubMed]
  • Fuller S, von Bonsdorff CH, Simons K. Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell. 1984 Aug;38(1):65–77. [PubMed]
  • Handler JS, Preston AS, Steele RE. Factors affecting the differentiation of epithelial transport and responsiveness to hormones. Fed Proc. 1984 May 15;43(8):2221–2224. [PubMed]
  • Hennighausen LG, Sippel AE. Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur J Biochem. 1982 Jun 15;125(1):131–141. [PubMed]
  • Jalkanen M, Nguyen H, Rapraeger A, Kurn N, Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells: localization on the cell surface with a monoclonal antibody. J Cell Biol. 1985 Sep;101(3):976–984. [PMC free article] [PubMed]
  • Klein G, Langegger M, Timpl R, Ekblom P. Role of laminin A chain in the development of epithelial cell polarity. Cell. 1988 Oct 21;55(2):331–341. [PubMed]
  • Klymkowsky MW. Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody. Nature. 1981 May 21;291(5812):249–251. [PubMed]
  • Kratochwil K, Schwartz P. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4041–4044. [PMC free article] [PubMed]
  • Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lander AD, Fujii DK, Reichardt LF. Laminin is associated with the "neurite outgrowth-promoting factors" found in conditioned media. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2183–2187. [PMC free article] [PubMed]
  • Lane EB. Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization. J Cell Biol. 1982 Mar;92(3):665–673. [PMC free article] [PubMed]
  • Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. [PubMed]
  • Lee EY, Lee WH, Kaetzel CS, Parry G, Bissell MJ. Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1419–1423. [PMC free article] [PubMed]
  • Lever JE. Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK). Proc Natl Acad Sci U S A. 1979 Mar;76(3):1323–1327. [PMC free article] [PubMed]
  • Levine JF, Stockdale FE. Cell-cell interactions promote mammary epithelial cell differentiation. J Cell Biol. 1985 May;100(5):1415–1422. [PMC free article] [PubMed]
  • Li ML, Aggeler J, Farson DA, Hatier C, Hassell J, Bissell MJ. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):136–140. [PMC free article] [PubMed]
  • Lin JJ, Feramisco JR. Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody. Cell. 1981 Apr;24(1):185–193. [PubMed]
  • Medina D, Oborn CJ, Kittrell FS, Ullrich RL. Properties of mouse mammary epithelial cell lines characterized by in vivo transplantation and in vitro immunocytochemical methods. J Natl Cancer Inst. 1986 Jun;76(6):1143–1156. [PubMed]
  • O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed]
  • Oliver N, Newby RF, Furcht LT, Bourgeois S. Regulation of fibronectin biosynthesis by glucocorticoids in human fibrosarcoma cells and normal fibroblasts. Cell. 1983 May;33(1):287–296. [PubMed]
  • Ornelles DA, Fey EG, Penman S. Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis. Mol Cell Biol. 1986 May;6(5):1650–1662. [PMC free article] [PubMed]
  • Parry G, Cullen B, Kaetzel CS, Kramer R, Moss L. Regulation of differentiation and polarized secretion in mammary epithelial cells maintained in culture: extracellular matrix and membrane polarity influences. J Cell Biol. 1987 Nov;105(5):2043–2051. [PMC free article] [PubMed]
  • Paulsson M, Aumailley M, Deutzmann R, Timpl R, Beck K, Engel J. Laminin-nidogen complex. Extraction with chelating agents and structural characterization. Eur J Biochem. 1987 Jul 1;166(1):11–19. [PubMed]
  • Rapraeger A, Jalkanen M, Bernfield M. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J Cell Biol. 1986 Dec;103(6 Pt 2):2683–2696. [PMC free article] [PubMed]
  • Richards J, Guzman R, Konrad M, Yang J, Nandi S. Growth of mouse mammary gland end buds cultured in a collagen gel matrix. Exp Cell Res. 1982 Oct;141(2):433–443. [PubMed]
  • Sasaki M, Kato S, Kohno K, Martin GR, Yamada Y. Sequence of the cDNA encoding the laminin B1 chain reveals a multidomain protein containing cysteine-rich repeats. Proc Natl Acad Sci U S A. 1987 Feb;84(4):935–939. [PMC free article] [PubMed]
  • Schaffner W, Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. [PubMed]
  • Simon-Assmann P, Bouziges F, Arnold C, Haffen K, Kedinger M. Epithelial-mesenchymal interactions in the production of basement membrane components in the gut. Development. 1988 Feb;102(2):339–347. [PubMed]
  • Simons K, Fuller SD. Cell surface polarity in epithelia. Annu Rev Cell Biol. 1985;1:243–288. [PubMed]
  • Sugahara K, Caldwell JH, Mason RJ. Electrical currents flow out of domes formed by cultured epithelial cells. J Cell Biol. 1984 Oct;99(4 Pt 1):1541–1544. [PMC free article] [PubMed]
  • Sugrue SP, Hay ED. The identification of extracellular matrix (ECM) binding sites on the basal surface of embryonic corneal epithelium and the effect of ECM binding on epithelial collagen production. J Cell Biol. 1986 May;102(5):1907–1916. [PMC free article] [PubMed]
  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed]
  • Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980 Oct;60(4):1049–1106. [PubMed]
  • Traub P, Nelson WJ, Kühn S, Vorgias CE. The interaction in vitro of the intermediate filament protein vimentin with naturally occurring RNAs and DNAs. J Biol Chem. 1983 Feb 10;258(3):1456–1466. [PubMed]
  • Voyles BA, McGrath CM. Markers to distinguish normal and neoplastic mammary epithelial cells in vitro: comparison of saturation density, morphology and concanavalin A reactivity. Int J Cancer. 1976 Oct 15;18(4):498–509. [PubMed]
  • Walker PR, Whitfield JF. Cytoplasmic microtubules are essential for the formation of membrane-bound polyribosomes. J Biol Chem. 1985 Jan 25;260(2):765–770. [PubMed]
  • Warburton MJ, Ormerod EJ, Monaghan P, Ferns S, Rudland PS. Characterization of a myoepithelial cell line derived from a neonatal rat mammary gland. J Cell Biol. 1981 Dec;91(3 Pt 1):827–836. [PMC free article] [PubMed]
  • Wicha MS, Lowrie G, Kohn E, Bagavandoss P, Mahn T. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A. 1982 May;79(10):3213–3217. [PMC free article] [PubMed]
  • Wiens D, Park CS, Stockdale FE. Milk protein expression and ductal morphogenesis in the mammary gland in vitro: hormone-dependent and -independent phases of adipocyte-mammary epithelial cell interaction. Dev Biol. 1987 Mar;120(1):245–258. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...