Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1987 Apr 1; 104(4): 1069–1075.
PMCID: PMC2114442

Biochemical characterization of tektins from sperm flagellar doublet microtubules


Tektins, protein components of stable protofilaments from sea urchin sperm flagellar outer doublet microtubules (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22), are separable by preparative SDS PAGE into 47-, 51-, and 55-kD equimolar components. High resolution two-dimensional tryptic peptide mapping reveals 63-67% coincidence among peptides of the 51-kD tektin chain and its 47- and 55-kD counterparts, greater than 70% coincidence between the 47- and 55-kD tektins, but little obvious similarity to either alpha- or beta- tubulin. With reverse-phase HPLC on a C18 column, using 6 M guanidine- HCl solubilization and a 0.1% trifluoroacetic acid/CH3CN gradient system (Stephens, R. E., 1984, J. Cell Biol. 90:37a [Abstr.]), the relatively less hydrophobic 51-kD tektin elutes at greater than 45% CH3CN, immediately followed by the 55-kD chain. The 47-kD tektin is substantially more hydrophobic, eluting between the two tubulins. The amino acid compositions of the tektins are very similar to each other but totally distinct from tubulin chains, being characterized by a greater than 50% higher arginine plus lysine content (in good agreement with the number of tryptic peptides) and about half the content of glycine, histidine, proline, and tyrosine. The proline content correlates well with the fact that tektin filaments have twice as much alpha-helical content as tubulin. Total hydrophobic amino acid content correlates with HPLC elution times for the tektins but not tubulins. The average amino acid composition of the tektins indicates that they resemble intermediate filament proteins, as originally postulated from structural, solubility, and electrophoretic properties. Tektins have higher cysteine and tryptophan contents than desmin and vimentin, which characteristically have only one residue of each, more closely resembling certain keratins in these amino acids.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amos WB, Amos LA, Linck RW. Proteins closely similar to flagellar tektins are detected in cilia but not in cytoplasmic microtubules. Cell Motil. 1985;5(3):239–249. [PubMed]
  • Amos WB, Amos LA, Linck RW. Studies of tektin filaments from flagellar microtubules by immunoelectron microscopy. J Cell Sci Suppl. 1986;5:55–68. [PubMed]
  • BEAVEN GH, HOLIDAY ER. Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem. 1952;7:319–386. [PubMed]
  • Bryan J. Biochemical properties of microtubules. Fed Proc. 1974 Feb;33(2):152–157. [PubMed]
  • Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. [PubMed]
  • Fairbanks G, Steck TL, Wallach DF. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. [PubMed]
  • Gibbons IR, Fronk E. Some properties of bound and soluble dynein from sea urchin sperm flagella. J Cell Biol. 1972 Aug;54(2):365–381. [PMC free article] [PubMed]
  • Heinrikson RL, Meredith SC. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Linck RW. Flagellar doublet microtubules: fractionation of minor components and alpha-tubulin from specific regions of the A-tubule. J Cell Sci. 1976 Mar;20(2):405–439. [PubMed]
  • Linck RW. The structure of microtubules. Ann N Y Acad Sci. 1982;383:98–121. [PubMed]
  • Linck RW, Langevin GL. Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly. J Cell Biol. 1981 May;89(2):323–337. [PMC free article] [PubMed]
  • Linck RW, Langevin GL. Structure and chemical composition of insoluble filamentous components of sperm flagellar microtubules. J Cell Sci. 1982 Dec;58:1–22. [PubMed]
  • Linck RW, Amos LA, Amos WB. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J Cell Biol. 1985 Jan;100(1):126–135. [PMC free article] [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Meza I, Huang B, Bryan J. Chemical heterogeneity of protofilaments forming the outer doublets from sea urchin flagella. Exp Cell Res. 1972 Oct;74(2):535–540. [PubMed]
  • Steinert PM, Steven AC, Roop DR. The molecular biology of intermediate filaments. Cell. 1985 Sep;42(2):411–420. [PubMed]
  • Stephens RE. Thermal fractionation of outer fiber doublet microtubules into A- and B-subfiber components. A- and B-tubulin. J Mol Biol. 1970 Feb 14;47(3):353–363. [PubMed]
  • Stephens RE. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. [PubMed]
  • Stephens RE. Differential protein synthesis and utilization during cilia formation in sea urchin embryos. Dev Biol. 1977 Dec;61(2):311–329. [PubMed]
  • Stephens RE. Primary structural differences among tubulin subunits from flagella, cilia, and the cytoplasm. Biochemistry. 1978 Jul 11;17(14):2882–2891. [PubMed]
  • Stephens RE. Fluorescent thin-layer peptide mapping for protein identification and comparison in the subnanomole range. Anal Biochem. 1978 Jan;84(1):116–126. [PubMed]
  • Stephens RE. Reconstitution of ciliary membranes containing tubulin. J Cell Biol. 1983 Jan;96(1):68–75. [PMC free article] [PubMed]
  • Weber K, Geisler N. Intermediate filaments: structural conservation and divergence. Ann N Y Acad Sci. 1985;455:126–143. [PubMed]
  • Weeds AG, Lowey S. Substructure of the myosin molecule. II. The light chains of myosin. J Mol Biol. 1971 Nov 14;61(3):701–725. [PubMed]
  • Witman GB, Carlson K, Berliner J, Rosenbaum JL. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. [PMC free article] [PubMed]
  • Witman GB, Carlson K, Rosenbaum JL. Chlamydomonas flagella. II. The distribution of tubulins 1 and 2 in the outer doublet microtubules. J Cell Biol. 1972 Sep;54(3):540–555. [PMC free article] [PubMed]
  • Zweidler A. Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol. 1978;17:223–233. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...