Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1988 Sep; 170(9): 3855–3863.
PMCID: PMC211381

Ethanolamine utilization in Salmonella typhimurium.


Ethanolamine can serve as the sole source of carbon and nitrogen for Salmonella typhimurium if vitamin B12 is present to serve as a cofactor. The pathway for ethanolamine utilization has been investigated in order to understand its regulation and determine whether the pathway is important to the selective forces that have maintained the ability to synthesize B12 in S. typhimurium. We isolated mutants that are defective in ethanolamine utilization (eut mutants). These mutants defined a cluster of genes located between purC and cysA at 50 min on the Salmonella chromosome. A genetic map of the eut region was constructed. Included in the map are mutations which affect ethanolamine ammonia lyase, the first degradative enzyme, and mutations which affect the second enzyme in the pathway, acetaldehyde dehydrogenase. Transcriptional regulation of the eut genes was studied by using eut-lac operon fusions created by insertion of Mu d lac. Transcription is induced by the simultaneous presence of ethanolamine and B12 in the growth medium. The eut genes constitute a single unit of transcription. One class of mutations located at the promoter-distal end of the eut operon prevent induction of transcription.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bassford PJ, Jr, kadner RJ. Genetic analysis of components involved in vitamin B12 uptake in Escherichia coli. J Bacteriol. 1977 Dec;132(3):796–805. [PMC free article] [PubMed]
  • Blackwell CM, Turner JM. Microbial metabolism of amino alcohols. Purification and properties of coenzyme B12-dependent ethanolamine ammonia-lyase of Escherichia coli. Biochem J. 1978 Nov 1;175(2):555–563. [PMC free article] [PubMed]
  • Blackwell CM, Turner JM. Microbial metabolism of amino alcohols. Formation of coenzyme B12-dependent ethanolamine ammonia-lyase and its concerted induction in Escherichia coli. Biochem J. 1978 Dec 15;176(3):751–757. [PMC free article] [PubMed]
  • Blackwell CM, Scarlett FA, Turner JM. Microbial metabolism of amino alcohols. Control of formation and stability of partially purified ethanolamine ammonia-lyase in Escherichia coli. J Gen Microbiol. 1977 Jan;98(1):133–139. [PubMed]
  • Bochner BR, Huang HC, Schieven GL, Ames BN. Positive selection for loss of tetracycline resistance. J Bacteriol. 1980 Aug;143(2):926–933. [PMC free article] [PubMed]
  • Bochner BR, Savageau MA. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol. 1977 Feb;33(2):434–444. [PMC free article] [PubMed]
  • Bradbeer C. The clostridial fermentations of choline and ethanolamine. 1. Preparation and properties of cell-free extracts. J Biol Chem. 1965 Dec;240(12):4669–4674. [PubMed]
  • Bradbeer C. The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. J Biol Chem. 1965 Dec;240(12):4675–4681. [PubMed]
  • Casadaban MJ, Cohen SN. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. [PMC free article] [PubMed]
  • Castilho BA, Olfson P, Casadaban MJ. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. [PMC free article] [PubMed]
  • Chan RK, Botstein D, Watanabe T, Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. [PubMed]
  • Chang GW, Chang JT. Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature. 1975 Mar 13;254(5496):150–151. [PubMed]
  • Chumley FG, Menzel R, Roth JR. Hfr formation directed by tn10. Genetics. 1979 Apr;91(4):639–655. [PMC free article] [PubMed]
  • Ciampi MS, Schmid MB, Roth JR. Transposon Tn10 provides a promoter for transcription of adjacent sequences. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5016–5020. [PMC free article] [PubMed]
  • Cunningham PR, Clark DP. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol Gen Genet. 1986 Dec;205(3):487–493. [PubMed]
  • Escalante-Semerena JC, Roth JR. Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol. 1987 May;169(5):2251–2258. [PMC free article] [PubMed]
  • Foster MA, Tejerina G, Guest JR, Woods DD. Two enzymic mechanisms for the methylation of homocysteine by extracts of Escherichia coli. Biochem J. 1964 Sep;92(3):476–488. [PMC free article] [PubMed]
  • Hong JS, Ames BN. Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3158–3162. [PMC free article] [PubMed]
  • Hughes KT, Roth JR. Conditionally transposition-defective derivative of Mu d1(Amp Lac). J Bacteriol. 1984 Jul;159(1):130–137. [PMC free article] [PubMed]
  • Hughes KT, Roth JR. Directed formation of deletions and duplications using Mud(Ap, lac). Genetics. 1985 Feb;109(2):263–282. [PMC free article] [PubMed]
  • Hughes KT, Roth JR. Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics. 1988 May;119(1):9–12. [PMC free article] [PubMed]
  • Jeter RM, Olivera BM, Roth JR. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol. 1984 Jul;159(1):206–213. [PMC free article] [PubMed]
  • Jones PW, Turner JM. Interrelationships between the enzymes of ethanolamine metabolism in Escherichia coli. J Gen Microbiol. 1984 Feb;130(2):299–308. [PubMed]
  • Jones PW, Turner JM. A model for the common control of enzymes of ethanolamine catabolism in Escherichia coli. J Gen Microbiol. 1984 Apr;130(4):849–860. [PubMed]
  • Larson TJ, Ehrmann M, Boos W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem. 1983 May 10;258(9):5428–5432. [PubMed]
  • Maloy SR, Nunn WD. Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol. 1981 Feb;145(2):1110–1111. [PMC free article] [PubMed]
  • Maloy SR, Roth JR. Regulation of proline utilization in Salmonella typhimurium: characterization of put::Mu d(Ap, lac) operon fusions. J Bacteriol. 1983 May;154(2):561–568. [PMC free article] [PubMed]
  • Noel KD, Ames GF. Evidence for a common mechanism for the insertion of the Tn10 transposon and for the generation of Tn10-stimulated deletions. Mol Gen Genet. 1978 Oct 30;166(2):217–223. [PubMed]
  • Proulx P, Fung CK. Metabolism of phosphoglycerides in E. coli. IV. The positional specificity and properties of phospholipase A. Can J Biochem. 1969 Dec;47(12):1125–1128. [PubMed]
  • Randle CL, Albro PW, Dittmer JC. The phosphoglyceride composition of Gram-negative bacteria and the changes in composition during growth. Biochim Biophys Acta. 1969;187(2):214–220. [PubMed]
  • Ratzkin B, Roth J. Cluster of genes controlling proline degradation in Salmonella typhimurium. J Bacteriol. 1978 Feb;133(2):744–754. [PMC free article] [PubMed]
  • Sanderson KE, Roth JR. Linkage map of Salmonella typhimurium, Edition VI. Microbiol Rev. 1983 Sep;47(3):410–453. [PMC free article] [PubMed]
  • Scarlett FA, Turner JM. Microbial metabolism of amino alcohols. Ethanolamine catabolism mediated by coenzyme B12-dependent ethanolamine ammonia-lyase in Escherichia coli and Klebsiella aerogenes. J Gen Microbiol. 1976 Jul;95(1):173–176. [PubMed]
  • Schmieger H. A method for detection of phage mutants with altered transducing ability. Mol Gen Genet. 1971;110(4):378–381. [PubMed]
  • VOGEL HJ, BONNER DM. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed]
  • Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. [PubMed]
  • Whitfield CD, Steers EJ, Jr, Weissbach H. Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase. J Biol Chem. 1970 Jan 25;245(2):390–401. [PubMed]
  • Wu TT. A model for three-point analysis of random general transduction. Genetics. 1966 Aug;54(2):405–410. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...