Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. Feb 1, 1978; 76(2): 293–309.
PMCID: PMC2109978

Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei

Abstract

We have used restriction endonucleases PstI, EcoRI, HapII, HhaI, and S1 nuclease to demonstrate the presence of a large complex component, the maxi-circle, in addition to the major mini-circle component in kinetoplast DNA (kDNA) networks of Trypanosoma brucei (East African Trypanosomiasis Research Organization [EATRO] 427). Endonuclease PstI and S1 nuclease cut the maxi-circle at a single site, allowing its isolation in a linear form with a mol wt of 12.2 x 10(6), determined by electron microscopy. The other enzymes give multiple maxi-circle fragments, whose added mol wt is 12-13 x 10(6), determined by gel electrophoresis. The maxi-circle in another T. brucei isolate (EATRO 1125) yields similar fragments but appears to contain a deletion of about 0.7 x 10(6) daltons. Electron microscopy of kDNA shows the presence of DNA considerably longer than the mini-circle contour length (0.3 micron) either in the network or as loops extending from the edge. This long DNA never exceeds the maxi-circle length (6.3 microns) and is completely removed by digestion with endonuclease PstI. 5-10% of the networks are doublets with up to 40 loops of DNA clustered between the two halves of the mini-circle network and probably represent a division stage of the kDNA. Digestion with PstI selectively removes these loops without markedly altering the mini-circle network. We conclude that the long DNA in both single and double networks represents maxi-circles and that long tandemly repeated oligomers of mini-circles are (virtually) absent. kDNA from Trypanosoma equiperdum, a trypanosome species incapable of synthesizing a fully functional mitochondrion, contains single and double networks of dimensions similar to those from T. brucei but without any DNA longer than mini-circle contour length. We conclude that the maxi-circle of trypanosomes is the genetic equivalent of the mitochondrial DNA (mtDNA) of other organisms.

Full Text

The Full Text of this article is available as a PDF (6.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brack C, Delain E, Riou G. Replicating, convalently closed, circular DNA from kinetoplasts of Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1642–1646. [PMC free article] [PubMed]
  • Brack C, Delain E, Riou G, Festy B. Molecular organization of the kinetoplast DNA of Trypanosoma cruzi treated with berenil, a DNA interacting drug. J Ultrastruct Res. 1972 Jun;39(5):568–579. [PubMed]
  • Cross GA. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. [PubMed]
  • Germond JE, Vogt VM, Hirt B. Characterization of the single-strand-specific nuclease S1 activity on double-stranded supercoiled polyoma DNA. Eur J Biochem. 1974 Apr 16;43(3):591–600. [PubMed]
  • Ito J, Kawamura F, Yanofsky S. Analysis of phi 29 and phi 15 genomes by bacterial restriction endonucleases, EcoR1 and Hpal. Virology. 1976 Mar;70(1):37–51. [PubMed]
  • Kleisen CM, Borst P. Sequence heterogeneity of the mini-circles of kinetoplast DNA of Crithidia luciliae and evidence for the presence of a component more complex than mini-circle DNA in the kinetoplast network. Biochim Biophys Acta. 1975 Nov 4;407(4):473–478. [PubMed]
  • Kleisen CM, Borst P, Weijers PJ. The structure of kinetoplast DNA. I. Properties of the intact multi-circular complex from Crithidia luciliae. Biochim Biophys Acta. 1975 May 1;390(2):155–167. [PubMed]
  • Kleisen MC, Borst P, Weijers PJ. The structure of kinetoplast DNA. 1. The mini-circles of Crithidia lucilae are heterogeneous in base sequence. Eur J Biochem. 1976 Apr 15;64(1):141–151. [PubMed]
  • Kleisen CM, Weislogel PO, Fonck K, Borst P. The structure of kinetoplast DNA. 2. Characterization of a novel component of high complexity present in the kinetoplast DNA network of Crithidia luciliae. Eur J Biochem. 1976 Apr 15;64(1):153–160. [PubMed]
  • Lang D, Mitani M. Simplified quantitative electron microscopy of biopolymers. Biopolymers. 1970;9(3):373–379. [PubMed]
  • Lanham SM. Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers. Nature. 1968 Jun 29;218(5148):1273–1274. [PubMed]
  • Laurent M, Van Assel S, Steinert M. Kinetoplast DNA. A unique macromolecular structure of considerable size and mechanical resistance. Biochem Biophys Res Commun. 1971 Apr 16;43(2):278–284. [PubMed]
  • McDonell MW, Simon MN, Studier FW. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol. 1977 Feb 15;110(1):119–146. [PubMed]
  • Roberts RJ, Breitmeyer JB, Tabachnik NF, Myers PA. A second specific endonuclease from Haemophilus aegyptius. J Mol Biol. 1975 Jan 5;91(1):121–123. [PubMed]
  • Simpson L, Simpson AM, Wesley RD. Replication of the kinetoplast DNA of Leishmania tarentolae and Crithidia fasciculata. Biochim Biophys Acta. 1974 May 17;349(2):161–172. [PubMed]
  • Steinert M, Assel S. Large circular mitochondrial DNA in Crithidia luciliae. Exp Cell Res. 1975 Dec;96(2):406–409. [PubMed]
  • Thomas M, Davis RW. Studies on the cleavage of bacteriophage lambda DNA with EcoRI Restriction endonuclease. J Mol Biol. 1975 Jan 25;91(3):315–328. [PubMed]
  • Vogt VM. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...