Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Dec 1990; 172(12): 7260–7262.
PMCID: PMC210851

DNA gyrase gyrA mutations in ciprofloxacin-resistant strains of Staphylococcus aureus: close similarity with quinolone resistance mutations in Escherichia coli.


The gyrA genes isolated from three ciprofloxacin-resistant clinical isolates of Staphylococcus aureus carried codon 84 (serine----leucine) and/or codon 85 (serine----proline) mutations that were absent in pretreatment susceptible strains. These substitutions occur in a region of the gyrase A protein wherein directly analogous mutations of serine 83----leucine and alanine 84----proline in Escherichia coli confer quinolone resistance. Thus, DNA gyrase A subunit mutations are implicated in resistance to ciprofloxacin in S. aureus.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (693K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Cullen ME, Wyke AW, Kuroda R, Fisher LM. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob Agents Chemother. 1989 Jun;33(6):886–894. [PMC free article] [PubMed]
  • Fisher LM, Lawrence JM, Josty IC, Hopewell R, Margerrison EE, Cullen ME. Ciprofloxacin and the fluoroquinolones. New concepts on the mechanism of action and resistance. Am J Med. 1989 Nov 30;87(5A):2S–8S. [PubMed]
  • Gellert M, Mizuuchi K, O'Dea MH, Itoh T, Tomizawa JI. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4772–4776. [PMC free article] [PubMed]
  • Gellert M, Mizuuchi K, O'Dea MH, Nash HA. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3872–3876. [PMC free article] [PubMed]
  • Hane MW, Wood TH. Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J Bacteriol. 1969 Jul;99(1):238–241. [PMC free article] [PubMed]
  • Hopewell R, Oram M, Briesewitz R, Fisher LM. DNA cloning and organization of the Staphylococcus aureus gyrA and gyrB genes: close homology among gyrase proteins and implications for 4-quinolone action and resistance. J Bacteriol. 1990 Jun;172(6):3481–3484. [PMC free article] [PubMed]
  • Horowitz DS, Wang JC. Mapping the active site tyrosine of Escherichia coli DNA gyrase. J Biol Chem. 1987 Apr 15;262(11):5339–5344. [PubMed]
  • Matthews PR, Reed KC, Stewart PR. The cloning of chromosomal DNA associated with methicillin and other resistances in Staphylococcus aureus. J Gen Microbiol. 1987 Jul;133(7):1919–1929. [PubMed]
  • Piercy EA, Barbaro D, Luby JP, Mackowiak PA. Ciprofloxacin for methicillin-resistant Staphylococcus aureus infections. Antimicrob Agents Chemother. 1989 Jan;33(1):128–130. [PMC free article] [PubMed]
  • Schaefler S. Methicillin-resistant strains of Staphylococcus aureus resistant to quinolones. J Clin Microbiol. 1989 Feb;27(2):335–336. [PMC free article] [PubMed]
  • Shalit I, Berger SA, Gorea A, Frimerman H. Widespread quinolone resistance among methicillin-resistant Staphylococcus aureus isolates in a general hospital. Antimicrob Agents Chemother. 1989 Apr;33(4):593–594. [PMC free article] [PubMed]
  • Shen LL, Mitscher LA, Sharma PN, O'Donnell TJ, Chu DW, Cooper CS, Rosen T, Pernet AG. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug--DNA binding model. Biochemistry. 1989 May 2;28(9):3886–3894. [PubMed]
  • Smith SM, Eng RH. Activity of ciprofloxacin against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 May;27(5):688–691. [PMC free article] [PubMed]
  • Swanberg SL, Wang JC. Cloning and sequencing of the Escherichia coli gyrA gene coding for the A subunit of DNA gyrase. J Mol Biol. 1987 Oct 20;197(4):729–736. [PubMed]
  • Takahata M, Nishino T. DNA gyrase of Staphylococcus aureus and inhibitory effect of quinolones on its activity. Antimicrob Agents Chemother. 1988 Aug;32(8):1192–1195. [PMC free article] [PubMed]
  • Ubukata K, Itoh-Yamashita N, Konno M. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1989 Sep;33(9):1535–1539. [PMC free article] [PubMed]
  • Wolfson JS, Hooper DC. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother. 1985 Oct;28(4):581–586. [PMC free article] [PubMed]
  • Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 1990 Jun;34(6):1271–1272. [PMC free article] [PubMed]
  • Yoshida H, Kojima T, Yamagishi J, Nakamura S. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. Mol Gen Genet. 1988 Jan;211(1):1–7. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...