• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Dec 1990; 172(12): 6849–6855.
PMCID: PMC210802

Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine.

Abstract

We have investigated the mechanism of osmotic stress adaptation (osmoregulation) in Agrobacterium tumefaciens biotype I (salt-tolerant) and biotype II (salt-sensitive) strains. Using natural-abundance 13C nuclear magnetic resonance spectroscopy, we identified all organic solutes that accumulated to significant levels in osmotically stressed cultures. When stressed, biotype I strains (C58, NT1, and A348) accumulated glutamate and a novel disaccharide, beta-fructofuranosyl-alpha-mannopyranoside, commonly known as mannosucrose. In the salt-sensitive biotype II strain K84, glutamate was observed but mannosucrose was not. We speculate that mannosucrose confers the extra osmotic tolerance observed in the biotype I strains. In addition to identifying the osmoregulated solutes that this species synthesizes, we investigated the ability of A. tumefaciens to utilize the powerful osmotic stress protectant glycine betaine when it is supplied in the medium. Results from growth experiments, nuclear magnetic resonance spectroscopy, and a 14C labeling experiment demonstrated that in the absence of osmotic stress, glycine betaine was metabolized, while in stressed cultures, glycine betaine accumulated intracellularly and conferred enhanced osmotic stress tolerance. Furthermore, when glycine betaine was taken up in stressed cells, its accumulation caused the intracellular concentration of mannosucrose to drop significantly. The possible role of osmoregulation of A. tumefaciens in the transformation of plants is discussed.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW. Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3672–3676. [PMC free article] [PubMed]
  • Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. [PMC free article] [PubMed]
  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW. Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell. 1981 Nov;27(1 Pt 2):143–153. [PubMed]
  • Kortstee GJ. The aerobic decomposition of choline by microorganisms. I. The ability of aerobic organisms, particularly coryneform bacteria, to utilize choline as the sole carbon and nitrogen source. Arch Mikrobiol. 1970;71(3):235–244. [PubMed]
  • Le Rudulier D, Bouillard L. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl Environ Microbiol. 1983 Jul;46(1):152–159. [PMC free article] [PubMed]
  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Smith LT, Pocard JA, Bernard T, Le Rudulier D. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol. 1988 Jul;170(7):3142–3149. [PMC free article] [PubMed]
  • Smith LT, Smith GM. An osmoregulated dipeptide in stressed Rhizobium meliloti. J Bacteriol. 1989 Sep;171(9):4714–4717. [PMC free article] [PubMed]
  • Tanaka T, Yamamoto S, Oi S, Yamamoto T. Structures of heterooligosaccharides synthesized by levansucrase. J Biochem. 1981 Aug;90(2):521–526. [PubMed]
  • Veluthambi K, Mahadevan S, Maheshwari R. Trehalose Toxicity in Cuscuta reflexa: CORRELATION WITH LOW TREHALASE ACTIVITY. Plant Physiol. 1981 Dec;68(6):1369–1374. [PMC free article] [PubMed]
  • Vernade D, Herrera-Estrella A, Wang K, Van Montagu M. Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. J Bacteriol. 1988 Dec;170(12):5822–5829. [PMC free article] [PubMed]
  • Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW. Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol. 1975 Jul;123(1):255–264. [PMC free article] [PubMed]
  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. [PubMed]
  • Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet. 1988;22:1–30. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...