• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Aug 1989; 171(8): 4326–4333.
PMCID: PMC210208

Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions.


The RpoN protein was originally identified in Escherichia coli as a sigma (sigma) factor essential for the expression of nitrogen regulons. In the present study we cloned the Pseudomonas putida rpoN gene and identified its gene product as a protein with an apparent molecular weight of 78,000. A mutant rpoN gene was constructed by in vitro insertion mutagenesis with a kanamycin cassette. A P. putida rpoN mutant was then isolated by replacement of the intact chromosomal rpoN gene by the mutant rpoN gene through homologous recombination. Examination of the phenotypes of the P. putida rpoN mutant thus obtained allowed the identification of a series of metabolic functions whose expression depends upon the RpoN sigma factor. The rpoN mutation in P. putida affected the utilization by this organism of nitrate, urea, and uncharged amino acids, namely, alanine, glycine, isoleucine, leucine, and serine, as nitrogen sources. The mutation also affected the utilization of the above-mentioned amino acids, as well as lysine, C4-dicarboxylates (succinate, fumarate), and alpha-ketoglutarate, as carbon sources. In contrast to the P. putida wild-type strain, the rpoN mutant was nonmotile. The colony morphology of the mutant strain was different from that of the wild-type strain. Studies on the expression of the TOL plasmid catabolic operons in the mutant strain demonstrated that transcription from the upper-operon promoter and from the xylS gene promoter requires the RpoN sigma factor.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bagdasarian M, Timmis KN. Host: vector systems for gene cloning in Pseudomonas. Curr Top Microbiol Immunol. 1982;96:47–67. [PubMed]
  • BAUCHOP T, ELSDEN SR. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. [PubMed]
  • Birkmann A, Sawers RG, Böck A. Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli. Mol Gen Genet. 1987 Dec;210(3):535–542. [PubMed]
  • Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. [PubMed]
  • Chang YF, Adams E. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. J Bacteriol. 1974 Feb;117(2):753–764. [PMC free article] [PubMed]
  • Cowing DW, Bardwell JC, Craig EA, Woolford C, Hendrix RW, Gross CA. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A. 1985 May;82(9):2679–2683. [PMC free article] [PubMed]
  • Dixon R. The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol Gen Genet. 1986 Apr;203(1):129–136. [PubMed]
  • Figurski DH, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. [PMC free article] [PubMed]
  • Franklin FC, Bagdasarian M, Bagdasarian MM, Timmis KN. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7458–7462. [PMC free article] [PubMed]
  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. [PubMed]
  • Harayama S, Engström P, Wolf-Watz H, Iino T, Hazelbauer GL. Cloning of trg, a gene for a sensory transducer in Escherichia coli. J Bacteriol. 1982 Oct;152(1):372–383. [PMC free article] [PubMed]
  • Harayama S, Leppik RA, Rekik M, Mermod N, Lehrbach PR, Reineke W, Timmis KN. Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xylA product. J Bacteriol. 1986 Aug;167(2):455–461. [PMC free article] [PubMed]
  • Harayama S, Rekik M, Timmis KN. Genetic analysis of a relaxed substrate specificity aromatic ring dioxygenase, toluate 1,2-dioxygenase, encoded by TOL plasmid pWW0 of Pseudomonas putida. Mol Gen Genet. 1986 Feb;202(2):226–234. [PubMed]
  • Helmann JD, Chamberlin MJ. Structure and function of bacterial sigma factors. Annu Rev Biochem. 1988;57:839–872. [PubMed]
  • Hirschman J, Wong PK, Sei K, Keener J, Kustu S. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7525–7529. [PMC free article] [PubMed]
  • Hoshino T, Tsuda M, Iino T, Nishio K, Kageyama M. Genetic mapping of bra genes affecting branched-chain amino acid transport in Pseudomonas aeruginosa. J Bacteriol. 1983 Mar;153(3):1272–1281. [PMC free article] [PubMed]
  • Janssen DB, Habets WJ, Marugg JT, Van Der Drift C. Nitrogen control in Pseudomonas aeruginosa: mutants affected in the synthesis of glutamine synthetase, urease, and NADP-dependent glutamate dehydrogenase. J Bacteriol. 1982 Jul;151(1):22–28. [PMC free article] [PubMed]
  • Johnson K, Parker ML, Lory S. Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J Biol Chem. 1986 Nov 25;261(33):15703–15708. [PubMed]
  • Komeda Y, Icho T, Iino T. Effects of galU mutation on flagellar formation in Escherichia coli. J Bacteriol. 1977 Feb;129(2):908–915. [PMC free article] [PubMed]
  • MacNeil T, MacNeil D, Tyler B. Fine-structure deletion map and complementation analysis of the glnA-glnL-glnG region in Escherichia coli. J Bacteriol. 1982 Jun;150(3):1302–1313. [PMC free article] [PubMed]
  • Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982;16:135–168. [PubMed]
  • Mermod N, Ramos JL, Bairoch A, Timmis KN. The xylS gene positive regulator of TOL plasmid pWWO: identification, sequence analysis and overproduction leading to constitutive expression of meta cleavage operon. Mol Gen Genet. 1987 May;207(2-3):349–354. [PubMed]
  • Merrick MJ, Gibbins JR. The nucleotide sequence of the nitrogen-regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved features in bacterial RNA polymerase sigma factors. Nucleic Acids Res. 1985 Nov 11;13(21):7607–7620. [PMC free article] [PubMed]
  • Minnich SA, Newton A. Promoter mapping and cell cycle regulation of flagellin gene transcription in Caulobacter crescentus. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1142–1146. [PMC free article] [PubMed]
  • Murray K, Duggleby CJ, Sala-Trepat JM, Williams PA. The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. Eur J Biochem. 1972 Jul 24;28(3):301–310. [PubMed]
  • Ramos JL, Mermod N, Timmis KN. Regulatory circuits controlling transcription of TOL plasmid operon encoding meta-cleavage pathway for degradation of alkylbenzoates by Pseudomonas. Mol Microbiol. 1987 Nov;1(3):293–300. [PubMed]
  • Ronson CW, Nixon BT, Albright LM, Ausubel FM. Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J Bacteriol. 1987 Jun;169(6):2424–2431. [PMC free article] [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Toukdarian A, Kennedy C. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J. 1986 Feb;5(2):399–407. [PMC free article] [PubMed]
  • Worsey MJ, Williams PA. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol. 1975 Oct;124(1):7–13. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...