• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Aug 1989; 171(8): 4121–4129.
PMCID: PMC210181

Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis.

Abstract

We describe a general strategy for the identification of genes that are controlled by a specific regulatory factor in vivo and the use of this strategy to identify genes in Bacillus subtilis that are controlled by spo0H, a regulatory gene required for the initiation of sporulation. The general strategy makes use of a cloned regulatory gene fused to an inducible promoter to control expression of the regulatory gene and random gene fusions to a reporter gene to monitor expression in the presence and absence of the regulatory gene product. spo0H encodes a sigma factor of RNA polymerase, sigma H, and is required for the extensive reprograming of gene expression during the transition from growth to stationary phase and during the initiation of sporulation. We identified 18 genes that are controlled by sigma H (csh genes) in vivo by monitoring expression of random gene fusions to lacZ, made by insertion mutagenesis with the transposon Tn917lac, in the presence and absence of sigma H. These genes had lower levels of expression in the absence of sigma H than in the presence of sigma H. Patterns of expression of the csh genes during growth and sporulation in wild-type and spo0H mutant cells indicated that other regulatory factors are probably involved in controlling expression of some of these genes. Three of the csh::Tn917lac insertion mutations caused noticeable phenotypes. One caused a defect in vegetative growth, but only in combination with a spo0H mutation. Two others caused a partial defect in sporulation. One of these also caused a defect in the development of genetic competence. Detailed characterization of some of the csh genes and their regulatory regions should help define the role of spo0H in the regulation of gene expression during the transition from growth to stationary phase and during the initiation of sporulation.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Albano M, Hahn J, Dubnau D. Expression of competence genes in Bacillus subtilis. J Bacteriol. 1987 Jul;169(7):3110–3117. [PMC free article] [PubMed]
  • Banner CD, Moran CP, Jr, Losick R. Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis. J Mol Biol. 1983 Aug 5;168(2):351–365. [PubMed]
  • Carter HL, 3rd, Moran CP., Jr New RNA polymerase sigma factor under spo0 control in Bacillus subtilis. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9438–9442. [PMC free article] [PubMed]
  • Carter HL, 3rd, Wang LF, Doi RH, Moran CP., Jr rpoD operon promoter used by sigma H-RNA polymerase in Bacillus subtilis. J Bacteriol. 1988 Apr;170(4):1617–1621. [PMC free article] [PubMed]
  • Connors MJ, Mason JM, Setlow P. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. J Bacteriol. 1986 May;166(2):417–425. [PMC free article] [PubMed]
  • Connors MJ, Setlow P. Cloning of a small, acid-soluble spore protein gene from Bacillus subtilis and determination of its complete nucleotide sequence. J Bacteriol. 1985 Jan;161(1):333–339. [PMC free article] [PubMed]
  • Dedonder RA, Lepesant JA, Lepesant-Kejzlarová J, Billault A, Steinmetz M, Kunst F. Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. Appl Environ Microbiol. 1977 Apr;33(4):989–993. [PMC free article] [PubMed]
  • Donovan W, Zheng LB, Sandman K, Losick R. Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol. 1987 Jul 5;196(1):1–10. [PubMed]
  • Dubnau D, Davidoff-Abelson R. Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol. 1971 Mar 14;56(2):209–221. [PubMed]
  • Dubnau E, Weir J, Nair G, Carter L, 3rd, Moran C, Jr, Smith I. Bacillus sporulation gene spo0H codes for sigma 30 (sigma H). J Bacteriol. 1988 Mar;170(3):1054–1062. [PMC free article] [PubMed]
  • Feavers IM, Price V, Moir A. The regulation of the fumarase (citG) gene of Bacillus subtilis 168. Mol Gen Genet. 1988 Mar;211(3):465–471. [PubMed]
  • Ferrari FA, Nguyen A, Lang D, Hoch JA. Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol. 1983 Jun;154(3):1513–1515. [PMC free article] [PubMed]
  • Freese E, Heinze JE, Galliers EM. Partial purine deprivation causes sporulation of Bacillus subtilis in the presence of excess ammonia, glucose and phosphate. J Gen Microbiol. 1979 Nov;115(1):193–205. [PubMed]
  • Grossman AD, Losick R. Extracellular control of spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4369–4373. [PMC free article] [PubMed]
  • Guzmán P, Westpheling J, Youngman P. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J Bacteriol. 1988 Apr;170(4):1598–1609. [PMC free article] [PubMed]
  • Hahn J, Albano M, Dubnau D. Isolation and characterization of Tn917lac-generated competence mutants of Bacillus subtilis. J Bacteriol. 1987 Jul;169(7):3104–3109. [PMC free article] [PubMed]
  • Hoch JA. Genetic analysis of pleiotropic negative sporulation mutants in Bacillus subtilis. J Bacteriol. 1971 Mar;105(3):896–901. [PMC free article] [PubMed]
  • Kenney TJ, Kirchman PA, Moran CP., Jr Gene encoding sigma E is transcribed from a sigma A-like promoter in Bacillus subtilis. J Bacteriol. 1988 Jul;170(7):3058–3064. [PMC free article] [PubMed]
  • Kenney TJ, Moran CP., Jr Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J Bacteriol. 1987 Jul;169(7):3329–3339. [PMC free article] [PubMed]
  • Lopez JM, Dromerick A, Freese E. Response of guanosine 5'-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J Bacteriol. 1981 May;146(2):605–613. [PMC free article] [PubMed]
  • Lopez JM, Marks CL, Freese E. The decrease of guanine nucleotides initiates sporulation of Bacillus subtilis. Biochim Biophys Acta. 1979 Oct 4;587(2):238–252. [PubMed]
  • Losick R, Youngman P, Piggot PJ. Genetics of endospore formation in Bacillus subtilis. Annu Rev Genet. 1986;20:625–669. [PubMed]
  • Love PE, Lyle MJ, Yasbin RE. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6201–6205. [PMC free article] [PubMed]
  • Mitani T, Heinze JE, Freese E. Induction of sporulation in Bacillus subtilis by decoyinine or hadacidin. Biochem Biophys Res Commun. 1977 Aug 8;77(3):1118–1125. [PubMed]
  • Ochi K, Ohsawa S. Initiation of antibiotic production by the stringent response of Bacillus subtilis Marburg. J Gen Microbiol. 1984 Oct;130(10):2473–2482. [PubMed]
  • Perkins JB, Youngman PJ. Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Proc Natl Acad Sci U S A. 1986 Jan;83(1):140–144. [PMC free article] [PubMed]
  • Piggot PJ, Coote JG. Genetic aspects of bacterial endospore formation. Bacteriol Rev. 1976 Dec;40(4):908–962. [PMC free article] [PubMed]
  • Piggot PJ, Hoch JA. Revised genetic linkage map of Bacillus subtilis. Microbiol Rev. 1985 Jun;49(2):158–179. [PMC free article] [PubMed]
  • Sandman K, Losick R, Youngman P. Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated insertional mutagenesis. Genetics. 1987 Dec;117(4):603–617. [PMC free article] [PubMed]
  • Schaeffer P, Millet J, Aubert JP. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. [PMC free article] [PubMed]
  • Segall J, Losick R. Cloned Bacillus subtilis DNA containing a gene that is activated early during sporulation. Cell. 1977 Aug;11(4):751–761. [PubMed]
  • Vasantha N, Freese E. The role of manganese in growth and sporulation of Bacillus subtilis. J Gen Microbiol. 1979 Jun;112(2):329–336. [PubMed]
  • Vasantha N, Freese E. Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides. J Bacteriol. 1980 Dec;144(3):1119–1125. [PMC free article] [PubMed]
  • Wu JJ, Howard MG, Piggot PJ. Regulation of transcription of the Bacillus subtilis spoIIA locus. J Bacteriol. 1989 Feb;171(2):692–698. [PMC free article] [PubMed]
  • Yamashita S, Yoshikawa H, Kawamura F, Takahashi H, Yamamoto T, Kobayashi Y, Saito H. The effect of spo0 mutations on the expression of spo0A- and spo0F-lacZ fusions. Mol Gen Genet. 1986 Oct;205(1):28–33. [PubMed]
  • Yansura DG, Henner DJ. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A. 1984 Jan;81(2):439–443. [PMC free article] [PubMed]
  • Youngman P, Perkins JB, Losick R. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid. 1984 Jul;12(1):1–9. [PubMed]
  • Youngman P, Zuber P, Perkins JB, Sandman K, Igo M, Losick R. New ways to study developmental genes in spore-forming bacteria. Science. 1985 Apr 19;228(4697):285–291. [PubMed]
  • Zuber P, Healy J, Carter HL, 3rd, Cutting S, Moran CP, Jr, Losick R. Mutation changing the specificity of an RNA polymerase sigma factor. J Mol Biol. 1989 Apr 20;206(4):605–614. [PubMed]
  • Zuber P, Healy JM, Losick R. Effects of plasmid propagation of a sporulation promoter on promoter utilization and sporulation in Bacillus subtilis. J Bacteriol. 1987 Feb;169(2):461–469. [PMC free article] [PubMed]
  • Zuber P, Losick R. Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation. Cell. 1983 Nov;35(1):275–283. [PubMed]
  • Zuber P, Losick R. Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J Bacteriol. 1987 May;169(5):2223–2230. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...