• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Jun 1989; 171(6): 3247–3257.
PMCID: PMC210043

Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences.

Abstract

The fliG, fliM, and fliN genes of Salmonella typhimurium encode flagellar components that participate in energy transduction and switching. We have cloned these genes and determined their sequences. The deduced amino acid sequences correspond to proteins with molecular masses of 36,809, 37,815, and 14,772 daltons, respectively. None of the protein sequences are especially hydrophobic or look as though they correspond to integral membrane proteins, a result consistent with other evidence suggesting that the proteins may be peripheral to the membrane, possibly mounted onto the basal body M ring. The fliL gene, which immediately precedes fliM, is of unknown function; it encodes a protein with a deduced molecular mass of 17,082 daltons. The hydropathy profile of FliL indicates that it is likely to be an integral membrane protein with at least one spanning segment, near its N terminus. None of the four proteins exhibit consensus N-terminal signal sequences. Comparison of the fliL, fliM, and fliN sequences with the homologous ones in Escherichia coli reveals ranges of similarities of 77 to 95% at the amino acid level and 75 to 86% at the nucleotide level, with the majority (58 to 89%) of codon changes being synonymous ones.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aizawa SI, Dean GE, Jones CJ, Macnab RM, Yamaguchi S. Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium. J Bacteriol. 1985 Mar;161(3):836–849. [PMC free article] [PubMed]
  • Bartlett DH, Frantz BB, Matsumura P. Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and FlaI control. J Bacteriol. 1988 Apr;170(4):1575–1581. [PMC free article] [PubMed]
  • Bartlett DH, Matsumura P. Identification of Escherichia coli region III flagellar gene products and description of two new flagellar genes. J Bacteriol. 1984 Nov;160(2):577–585. [PMC free article] [PubMed]
  • Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. [PubMed]
  • Clegg DO, Koshland DE., Jr Identification of a bacterial sensing protein and effects of its elevated expression. J Bacteriol. 1985 Apr;162(1):398–405. [PMC free article] [PubMed]
  • Dale RM, McClure BA, Houchins JP. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18 S rDNA. Plasmid. 1985 Jan;13(1):31–40. [PubMed]
  • DePamphilis ML, Adler J. Attachment of flagellar basal bodies to the cell envelope: specific attachment to the outer, lipopolysaccharide membrane and the cyoplasmic membrane. J Bacteriol. 1971 Jan;105(1):396–407. [PMC free article] [PubMed]
  • Elliott T, Geiduschek EP. Defining a bacteriophage T4 late promoter: absence of a "-35" region. Cell. 1984 Jan;36(1):211–219. [PubMed]
  • Enomoto M. Genetic studies of paralyzed mutant in Salmonella. I. Genetic fine structure of the mot loci in Salmonella typhimurium. Genetics. 1966 Sep;54(3):715–726. [PMC free article] [PubMed]
  • Fickett JW. Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 1982 Sep 11;10(17):5303–5318. [PMC free article] [PubMed]
  • Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. [PubMed]
  • Helmann JD, Chamberlin MJ. DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6422–6424. [PMC free article] [PubMed]
  • Homma M, Aizawa S, Dean GE, Macnab RM. Identification of the M-ring protein of the flagellar motor of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7483–7487. [PMC free article] [PubMed]
  • Homma M, Iino T, Macnab RM. Identification and characterization of the products of six region III flagellar genes (flaAII.3 through flaQII) of Salmonella typhimurium. J Bacteriol. 1988 May;170(5):2221–2228. [PMC free article] [PubMed]
  • Iino T, Komeda Y, Kutsukake K, Macnab RM, Matsumura P, Parkinson JS, Simon MI, Yamaguchi S. New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1988 Dec;52(4):533–535. [PMC free article] [PubMed]
  • Komeda Y. Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol. 1982 Apr;150(1):16–26. [PMC free article] [PubMed]
  • Kuo SC, Koshland DE., Jr Sequence of the flaA (cheC) locus of Escherichia coli and discovery of a new gene. J Bacteriol. 1986 Jun;166(3):1007–1012. [PMC free article] [PubMed]
  • Kutsukake K, Iino T, Komeda Y, Yamaguchi S. Functional homology of fla genes between Salmonella typhimurium and Escherichia coli. Mol Gen Genet. 1980 Apr;178(1):59–67. [PubMed]
  • Kutsukake K, Ohya Y, Yamaguchi S, Iino T. Operon structure of flagellar genes in Salmonella typhimurium. Mol Gen Genet. 1988 Sep;214(1):11–15. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Macnab RM, DeRosier DJ. Bacterial flagellar structure and function. Can J Microbiol. 1988 Apr;34(4):442–451. [PubMed]
  • Parkinson JS, Parker SR, Talbert PB, Houts SE. Interactions between chemotaxis genes and flagellar genes in Escherichia coli. J Bacteriol. 1983 Jul;155(1):265–274. [PMC free article] [PubMed]
  • Ravid S, Eisenbach M. Direction of flagellar rotation in bacterial cell envelopes. J Bacteriol. 1984 Apr;158(1):222–230. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Sharp PM, Li WH. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987 Feb 11;15(3):1281–1295. [PMC free article] [PubMed]
  • Silverman M, Simon M. Genetic analysis of flagellar mutants in Escherichia coli. J Bacteriol. 1973 Jan;113(1):105–113. [PMC free article] [PubMed]
  • Collins AL, Stocker BA. Salmonella typhimurium mutants generally defective in chemotaxis. J Bacteriol. 1976 Dec;128(3):754–765. [PMC free article] [PubMed]
  • Yamaguchi S, Aizawa S, Kihara M, Isomura M, Jones CJ, Macnab RM. Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol. 1986 Dec;168(3):1172–1179. [PMC free article] [PubMed]
  • Yamaguchi S, Fujita H, Ishihara A, Aizawa S, Macnab RM. Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J Bacteriol. 1986 Apr;166(1):187–193. [PMC free article] [PubMed]
  • Yamaguchi S, Fujita H, Taira T, Kutsukake K, Homma M, Iino T. Genetic analysis of three additional fla genes in Salmonella typhimurium. J Gen Microbiol. 1984 Dec;130(12):3339–3342. [PubMed]
  • Yamaguchi S, Iino T, Horiguchi T, Ota K. Genetic analysis of fla and mot cistrons closely linked to H1 in Salmonella abortusequi and its derivatives. J Gen Microbiol. 1972 Apr;70(1):59–75. [PubMed]
  • Yanofsky C, vanCleemput M. Nucleotide sequence of trpE of Salmonella typhimurium and its homology with the corresponding sequence of Escherichia coli. J Mol Biol. 1982 Mar 5;155(3):235–246. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...