• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Sep 1991; 173(18): 5648–5652.
PMCID: PMC208293

Arc and Sfr functions of the Escherichia coli K-12 arcA gene product are genetically and physiologically separable.


The Escherichia coli arcA gene product regulates chromosomal gene expression in response to deprivation of oxygen (Arc function; Arc stands for aerobic respiration control) and is required for expression of the F plasmid DNA transfer (tra) genes (Sfr function; Sfr stands for sex factor regulation). Using appropriate lacZ fusions, we have examined the relationship between these two genetic regulatory functions. Arc function in vivo was measured by anaerobic repression of a chromosomal sdh-lacZ operon fusion (sdh stands for succinate dehydrogenase). Sfr function was measured by activation of a plasmid traY-lacZ gene fusion. An eight-codon insertion near the 5' terminus of arcA, designated arcA1, abolished Arc function, as previously reported by S. Iuchi and E.C.C. Lin (Proc. Natl. Acad. Sci. USA 85:1888-1892, 1988), but left Sfr function largely (greater than or equal to 60%) intact. Similarly, the arcB1 mutation, which depressed sdh expression and is thought to act by abolishing the signal input that elicits ArcA function, had little effect (less than or equal to 20%) on the Sfr function of the arcA+ gene product. Conversely, a valine-to-methionine mutation at codon 203 (the sfrA5 allele) essentially abolished Sfr activity without detectably altering Arc activity. These data indicate that Sfr and Arc functions are separately expressed and regulated properties of the same protein.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (971K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Achtman M, Willetts N, Clark AJ. Beginning a genetic analysis of conjugational transfer determined by the F factor in Escherichia coli by isolation and characterization of transfer-deficient mutants. J Bacteriol. 1971 May;106(2):529–538. [PMC free article] [PubMed]
  • Bachmann BJ. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. [PMC free article] [PubMed]
  • Beutin L, Achtman M. Two Escherichia coli chromosomal cistrons, sfrA and sfrB, which are needed for expression of F factor tra functions. J Bacteriol. 1979 Sep;139(3):730–737. [PMC free article] [PubMed]
  • Beutin L, Manning PA, Achtman M, Willetts N. sfrA and sfrB products of Escherichia coli K-12 are transcriptional control factors. J Bacteriol. 1981 Feb;145(2):840–844. [PMC free article] [PubMed]
  • Burbulys D, Trach KA, Hoch JA. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell. 1991 Feb 8;64(3):545–552. [PubMed]
  • Buxton RS, Drury LS. Cloning and insertional inactivation of the dye (sfrA) gene, mutation of which affects sex factor F expression and dye sensitivity of Escherichia coli K-12. J Bacteriol. 1983 Jun;154(3):1309–1314. [PMC free article] [PubMed]
  • Buxton RS, Hammer-Jespersen K, Hansen TD. Insertion of bacteriophage lambda into the deo operon of Escherichia coli K-12 and isolation of plaque-forming lambdadeo+ transducing bacteriophages. J Bacteriol. 1978 Nov;136(2):668–681. [PMC free article] [PubMed]
  • Drury LS, Buxton RS. DNA sequence analysis of the dye gene of Escherichia coli reveals amino acid homology between the dye and OmpR proteins. J Biol Chem. 1985 Apr 10;260(7):4236–4242. [PubMed]
  • Forst S, Inouye M. Environmentally regulated gene expression for membrane proteins in Escherichia coli. Annu Rev Cell Biol. 1988;4:21–42. [PubMed]
  • Grossman TH, Silverman PM. Structure and function of conjugative pili: inducible synthesis of functional F pili by Escherichia coli K-12 containing a lac-tra operon fusion. J Bacteriol. 1989 Feb;171(2):650–656. [PMC free article] [PubMed]
  • Gyllensten UB, Erlich HA. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7652–7656. [PMC free article] [PubMed]
  • Iuchi S, Cameron DC, Lin EC. A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J Bacteriol. 1989 Feb;171(2):868–873. [PMC free article] [PubMed]
  • Iuchi S, Chepuri V, Fu HA, Gennis RB, Lin EC. Requirement for terminal cytochromes in generation of the aerobic signal for the arc regulatory system in Escherichia coli: study utilizing deletions and lac fusions of cyo and cyd. J Bacteriol. 1990 Oct;172(10):6020–6025. [PMC free article] [PubMed]
  • Iuchi S, Furlong D, Lin EC. Differentiation of arcA, arcB, and cpxA mutant phenotypes of Escherichia coli by sex pilus formation and enzyme regulation. J Bacteriol. 1989 May;171(5):2889–2893. [PMC free article] [PubMed]
  • Iuchi S, Lin EC. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1888–1892. [PMC free article] [PubMed]
  • Iuchi S, Matsuda Z, Fujiwara T, Lin EC. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol. 1990 May;4(5):715–727. [PubMed]
  • Lerner TJ, Zinder ND. Chromosomal regulation of sexual expression in Escherichia coli. J Bacteriol. 1979 Feb;137(2):1063–1065. [PMC free article] [PubMed]
  • McEwen J, Silverman P. Mutations in genes cpxA and cpxB of Escherichia coli K-12 cause a defect in isoleucine and valine syntheses. J Bacteriol. 1980 Oct;144(1):68–73. [PMC free article] [PubMed]
  • Mizuno T, Kato M, Jo YL, Mizushima S. Interaction of OmpR, a positive regulator, with the osmoregulated ompC and ompF genes of Escherichia coli. Studies with wild-type and mutant OmpR proteins. J Biol Chem. 1988 Jan 15;263(2):1008–1012. [PubMed]
  • Nixon BT, Ronson CW, Ausubel FM. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7850–7854. [PMC free article] [PubMed]
  • Perego M, Wu JJ, Spiegelman GB, Hoch JA. Mutational dissociation of the positive and negative regulatory properties of the Spo0A sporulation transcription factor of Bacillus subtilis. Gene. 1991 Apr;100:207–212. [PubMed]
  • Roeder W, Somerville RL. Cloning the trpR gene. Mol Gen Genet. 1979 Nov;176(3):361–368. [PubMed]
  • Silverman P, Nat K, McEwen J, Birchman R. Selection of Escherichia coli K-12 chromosomal mutants that prevent expression of F-plasmid functions. J Bacteriol. 1980 Sep;143(3):1519–1523. [PMC free article] [PubMed]
  • Silverman PM, Wickersham E, Harris R. Regulation of the F plasmid traY promoter in Escherichia coli by host and plasmid factors. J Mol Biol. 1991 Mar 5;218(1):119–128. [PubMed]
  • Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...