• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Dec 1992; 174(23): 7555–7565.
PMCID: PMC207465

Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of nod signal production and bacteroid maturation.

Abstract

Earlier, we showed that Rhizobium meliloti nodM codes for glucosamine synthase and that nodM and nodN mutants produce strongly reduced root hair deformation activity and display delayed nodulation of Medicago sativa (Baev et al., Mol. Gen. Genet. 228:113-124, 1991). Here, we demonstrate that nodM and nodN genes from Rhizobium leguminosarum biovar viciae restore the root hair deformation activity of exudates of the corresponding R. meliloti mutant strains. Partial restoration of the nodulation phenotypes of these two strains was also observed. In nodulation assays, galactosamine and N-acetylglucosamine could substitute for glucosamine in the suppression of the R. meliloti nodM mutation, although N-acetylglucosamine was less efficient. We observed that in nodules induced by nodM mutants, the bacteroids did not show complete development or were deteriorated, resulting in decreased nitrogen fixation and, consequently, lower dry weights of the plants. This mutant phenotype could also be suppressed by exogenously supplied glucosamine, N-acetylglucosamine, and galactosamine and to a lesser extent by glucosamine-6-phosphate, indicating that the nodM mutant bacteroids are limited for glucosamine. In addition, by using derivatives of the wild type and a nodM mutant in which the nod genes are expressed at a high constitutive level, it was shown that the nodM mutant produces significantly fewer Nod factors than the wild-type strain but that their chemical structures are unchanged. However, the relative amounts of analogs of the cognate Nod signals were elevated, and this may explain the observed host range effects of the nodM mutation. Our data indicate that both the nodM and nodN genes of the two species have common functions and confirm that NodM is a glucosamine synthase with the biochemical role of providing sufficient amounts of the sugar moiety for the synthesis of the glucosamine oligosaccharide signal molecules.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (4.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A. Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. Mol Gen Genet. 1991 Aug;228(1-2):113–124. [PubMed]
  • Banfalvi Z, Kondorosi A. Production of root hair deformation factors by Rhizobium meliloti nodulation genes in Escherichia coli: HsnD (NodH) is involved in the plant host-specific modification of the NodABC factor. Plant Mol Biol. 1989 Jul;13(1):1–12. [PubMed]
  • Canter Cremers H, Spaink HP, Wijfjes AH, Pees E, Wijffelman CA, Okker RJ, Lugtenberg BJ. Additional nodulation genes on the Sym plasmid of Rhizobium leguminosarum biovar viciae. Plant Mol Biol. 1989 Aug;13(2):163–174. [PubMed]
  • Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. [PMC free article] [PubMed]
  • Ditta G, Stanfield S, Corbin D, Helinski DR. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. [PMC free article] [PubMed]
  • Faucher C, Maillet F, Vasse J, Rosenberg C, van Brussel AA, Truchet G, Dénarié J. Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal. J Bacteriol. 1988 Dec;170(12):5489–5499. [PMC free article] [PubMed]
  • Hirsch AM, Long SR, Bang M, Haskins N, Ausubel FM. Structural studies of alfalfa roots infected with nodulation mutants of Rhizobium meliloti. J Bacteriol. 1982 Jul;151(1):411–419. [PMC free article] [PubMed]
  • Horvath B, Kondorosi E, John M, Schmidt J, Török I, Györgypal Z, Barabas I, Wieneke U, Schell J, Kondorosi A. Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell. 1986 Aug 1;46(3):335–343. [PubMed]
  • Kondorosi A, Kondorosi E, John M, Schmidt J, Schell J. The role of nodulation genes in bacterium-plant communication. Genet Eng (N Y) 1991;13:115–136. [PubMed]
  • Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffmann B, Schell J, Kondorosi A. Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J. 1989 May;8(5):1331–1340. [PMC free article] [PubMed]
  • Kondorosi E, Pierre M, Cren M, Haumann U, Buiré M, Hoffmann B, Schell J, Kondorosi A. Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol. 1991 Dec 20;222(4):885–896. [PubMed]
  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. [PubMed]
  • Lewis-Henderson WR, Djordjevic MA. A cultivar-specific interaction between Rhizobium leguminosarum bv. trifolii and subterranean clover is controlled by nodM, other bacterial cultivar specificity genes, and a single recessive host gene. J Bacteriol. 1991 May;173(9):2791–2799. [PMC free article] [PubMed]
  • Long SR. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. [PubMed]
  • Marie C, Barny MA, Downie JA. Rhizobium leguminosarum has two glucosamine synthases, GlmS and NodM, required for nodulation and development of nitrogen-fixing nodules. Mol Microbiol. 1992 Apr;6(7):843–851. [PubMed]
  • REYNOLDS ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. [PMC free article] [PubMed]
  • Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé JC. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell. 1991 Dec 20;67(6):1131–1143. [PubMed]
  • Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A. Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1757–1761. [PMC free article] [PubMed]
  • Schlaman HR, Horvath B, Vijgenboom E, Okker RJ, Lugtenberg BJ. Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viciae. J Bacteriol. 1991 Jul;173(14):4277–4287. [PMC free article] [PubMed]
  • Schultze M, Quiclet-Sire B, Kondorosi E, Virelizer H, Glushka JN, Endre G, Géro SD, Kondorosi A. Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):192–196. [PMC free article] [PubMed]
  • Schmidt J, Wingender R, John M, Wieneke U, Schell J. Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8578–8582. [PMC free article] [PubMed]
  • Sharma SB, Signer ER. Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev. 1990 Mar;4(3):344–356. [PubMed]
  • Spaink HP, Aarts A, Stacey G, Bloemberg GV, Lugtenberg BJ, Kennedy EP. Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant Microbe Interact. 1992 Jan-Feb;5(1):72–80. [PubMed]
  • Spaink HP, Sheeley DM, van Brussel AA, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJ. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991 Nov 14;354(6349):125–130. [PubMed]
  • Spurr AR. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. [PubMed]
  • Surin BP, Downie JA. Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host-specific nodulation. Mol Microbiol. 1988 Mar;2(2):173–183. [PubMed]
  • Wu HC, Wu TC. Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J Bacteriol. 1971 Feb;105(2):455–466. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...