Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1991 Feb; 173(4): 1544–1553.
PMCID: PMC207294

Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite.

Abstract

A chromosomal locus of Salmonella typhimurium which complements S. typhimurium asr (anaerobic sulfite reduction) mutants and confers on Escherichia coli the ability to produce hydrogen sulfide from sulfite was recently cloned (C. J. Huang and E. L. Barrett, J. Bacteriol. 172:4100-4102, 1990). The DNA sequence and the transcription start site have been determined. Analysis of the sequence and gene products revealed a functional operon containing three genes which have been designated asrA, asrB, and asrC, encoding peptides of 40, 31, and 37 kDa, respectively. The predicted amino acid sequences of both asrA and asrC contained arrangements of cysteines characteristic of [4Fe-4S] ferredoxins. The sequence of asrB contained a typical nucleotide-binding region. The sequence of asrC contained, in addition to the ferredoxinlike cysteine clusters, two other cysteine clusters closely resembling the proposed siroheme-binding site in biosynthetic sulfite reductase. Expression of lacZ fused to the asr promoter was repressed by oxygen and induced by sulfite. Analysis of promoter deletions revealed a region specific for sulfite regulation and a second region required for anaerobic expression. Computer-assisted DNA sequence analysis revealed a site just upstream of the first open reading frame which had significant homology to the FNR protein-binding site of E. coli NADH-linked nitrite reductase. However, asr expression by the fusion plasmid was not affected by site-specific mutations within the apparent FNR-binding site.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Barrett EL, Chang GW. Cysteine auxotrophs of Salmonella typhimurium which grow without cysteine in a hydrogen/carbon dioxide atmosphere. J Gen Microbiol. 1979 Dec;115(2):513–516. [PubMed]
  • Barrett EL, Clark MA. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev. 1987 Jun;51(2):192–205. [PMC free article] [PubMed]
  • Böhm R, Sauter M, Böck A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol. 1990 Feb;4(2):231–243. [PubMed]
  • Helmann JD, Chamberlin MJ. Structure and function of bacterial sigma factors. Annu Rev Biochem. 1988;57:839–872. [PubMed]
  • Chen EY, Seeburg PH. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. [PubMed]
  • Clark MA, Barrett EL. The phs gene and hydrogen sulfide production by Salmonella typhimurium. J Bacteriol. 1987 Jun;169(6):2391–2397. [PMC free article] [PubMed]
  • Cole ST, Eiglmeier K, Ahmed S, Honore N, Elmes L, Anderson WF, Weiner JH. Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol. 1988 Jun;170(6):2448–2456. [PMC free article] [PubMed]
  • Cole ST, Grundström T, Jaurin B, Robinson JJ, Weiner JH. Location and nucleotide sequence of frdB, the gene coding for the iron-sulphur protein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem. 1982 Aug;126(1):211–216. [PubMed]
  • Darlison MG, Guest JR. Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli. Biochem J. 1984 Oct 15;223(2):507–517. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Dorman CJ, Barr GC, Ni Bhriain N, Higgins CF. DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol. 1988 Jun;170(6):2816–2826. [PMC free article] [PubMed]
  • Eiglmeier K, Honoré N, Iuchi S, Lin EC, Cole ST. Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol. 1989 Jul;3(7):869–878. [PubMed]
  • Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. [PubMed]
  • George DG, Hunt LT, Yeh LS, Barker WC. New perspectives on bacterial ferredoxin evolution. J Mol Evol. 1985;22(1):20–31. [PubMed]
  • Gottesman S. Bacterial regulation: global regulatory networks. Annu Rev Genet. 1984;18:415–441. [PubMed]
  • Guerlesquin F, Bruschi M, Bovier-Lapierre G, Bonicel J, Couchoud P. Primary structure of the two (4 Fe-4 S) clusters ferredoxin from Desulfovibrio desulfuricans (strain Norway 4). Biochimie. 1983 Jan;65(1):43–47. [PubMed]
  • Hallenbeck PC, Clark MA, Barrett EL. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase. J Bacteriol. 1989 Jun;171(6):3008–3015. [PMC free article] [PubMed]
  • Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. [PMC free article] [PubMed]
  • Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. [PubMed]
  • Huang CJ, Barrett EL. Identification and cloning of genes involved in anaerobic sulfite reduction by Salmonella typhimurium. J Bacteriol. 1990 Jul;172(7):4100–4102. [PMC free article] [PubMed]
  • Jovanovich SB, Lebowitz J. Estimation of the effect of coumermycin A1 on Salmonella typhimurium promoters by using random operon fusions. J Bacteriol. 1987 Oct;169(10):4431–4435. [PMC free article] [PubMed]
  • Jayaraman PS, Gaston KL, Cole JA, Busby SJ. The nirB promoter of Escherichia coli: location of nucleotide sequences essential for regulation by oxygen, the FNR protein and nitrite. Mol Microbiol. 1988 Jul;2(4):527–530. [PubMed]
  • Jeter RM, Olivera BM, Roth JR. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol. 1984 Jul;159(1):206–213. [PMC free article] [PubMed]
  • Kovacs KL, Seefeldt LC, Tigyi G, Doyle CM, Mortenson LE, Arp DJ. Immunological relationship among hydrogenases. J Bacteriol. 1989 Jan;171(1):430–435. [PMC free article] [PubMed]
  • Kroos L, Kunkel B, Losick R. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science. 1989 Jan 27;243(4890):526–529. [PubMed]
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Murphy MJ, Siegel LM, Kamin H, Rosenthal D. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. II. Identification of a new class of heme prosthetic group: an iron-tetrahydroporphyrin (isobacteriochlorin type) with eight carboxylic acid groups. J Biol Chem. 1973 Apr 25;248(8):2801–2814. [PubMed]
  • Odom JM, Peck HD., Jr Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Annu Rev Microbiol. 1984;38:551–592. [PubMed]
  • Ostrowski J, Barber MJ, Rueger DC, Miller BE, Siegel LM, Kredich NM. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem. 1989 Sep 25;264(27):15796–15808. [PubMed]
  • Ostrowski J, Kredich NM. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine. J Bacteriol. 1989 Jan;171(1):130–140. [PMC free article] [PubMed]
  • Ostrowski J, Wu JY, Rueger DC, Miller BE, Siegel LM, Kredich NM. Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. J Biol Chem. 1989 Sep 15;264(26):15726–15737. [PubMed]
  • Padron AP, Dockstader WB. Selective medium for hydrogen sulfide production by salmonellae. Appl Microbiol. 1972 Jun;23(6):1107–1112. [PMC free article] [PubMed]
  • Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Wootton J, Nicolson R, Cole J. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem. 1990 Jul 31;191(2):315–323. [PubMed]
  • Phillips MK, Hederstedt L, Hasnain S, Rutberg L, Guest JR. Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol. 1987 Feb;169(2):864–873. [PMC free article] [PubMed]
  • Pruss GJ, Drlica K. DNA supercoiling and prokaryotic transcription. Cell. 1989 Feb 24;56(4):521–523. [PubMed]
  • Raibaud O, Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet. 1984;18:173–206. [PubMed]
  • Rosenberg M, Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Sayavedra-Soto LA, Powell GK, Evans HJ, Morris RO. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8395–8399. [PMC free article] [PubMed]
  • Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. [PMC free article] [PubMed]
  • Siegel LM, Davis PS. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem. 1974 Mar 10;249(5):1587–1598. [PubMed]
  • Simons RW, Houman F, Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. [PubMed]
  • Spiro S, Guest JR. Inactivation of the FNR protein of Escherichia coli by targeted mutagenesis in the N-terminal region. Mol Microbiol. 1988 Nov;2(6):701–707. [PubMed]
  • Strauch KL, Lenk JB, Gamble BL, Miller CG. Oxygen regulation in Salmonella typhimurium. J Bacteriol. 1985 Feb;161(2):673–680. [PMC free article] [PubMed]
  • Taketo A. DNA transfection of Escherichia coli by electroporation. Biochim Biophys Acta. 1988 Mar 31;949(3):318–324. [PubMed]
  • Voordouw G, Strang JD, Wilson FR. Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. J Bacteriol. 1989 Jul;171(7):3881–3889. [PMC free article] [PubMed]
  • Wierenga RK, Terpstra P, Hol WG. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. [PubMed]
  • Yamamoto N, Droffner ML. Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2077–2081. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...