Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1994 Jul; 176(13): 3895–3902.
PMCID: PMC205586

Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe.


Trehalose-6-P inhibits hexokinases in Saccharomyces cerevisiae (M. A. Blázquez, R. Lagunas, C. Gancedo, and J. M. Gancedo, FEBS Lett. 329:51-54, 1993), and disruption of the TPS1 gene (formerly named CIF1 or FDP1) encoding trehalose-6-P synthase prevents growth in glucose. We have found that the hexokinase from Schizosaccharomyces pombe is not inhibited by trehalose-6-P even at a concentration of 3 mM. The highest internal concentration of trehalose-6-P that we measured in S. pombe was 0.75 mM after heat shock. We have isolated from S. pombe the tps1+ gene, which is homologous to the Saccharomyces cerevisiae TPS1 gene. The DNA sequence from tps1+ predicts a protein of 479 amino acids with 65% identity with the protein of S. cerevisiae. The tps1+ gene expressed from its own promoter could complement the lack of trehalose-6-P synthase in S. cerevisiae tps1 mutants. The TPS1 gene from S. cerevisiae could also restore trehalose synthesis in S. pombe tps1 mutants. A chromosomal disruption of the tps1+ gene in S. pombe did not have a noticeable effect on growth in glucose, in contrast with the disruption of TPS1 in S. cerevisiae. However, the disruption prevented germination of spores carrying it. The level of an RNA hybridizing with an internal probe of the tps1+ gene reached a maximum after 20 min of heat shock treatment. The results presented support the idea that trehalose-6-P plays a role in the control of glycolysis in S. cerevisiae but not in S. pombe and show that the trehalose pathway has different roles in the two yeast species.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Argüelles JC, Carrillo D, Vicente-Soler J, García-Carmona F, Gacto M. Lack of correlation between trehalase activation and trehalose-6 phosphate synthase deactivation in cAMP-altered mutants of Saccharomyces cerevisiae. Curr Genet. 1993 May-Jun;23(5-6):382–387. [PubMed]
  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van der Zee P, Wiemken A. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem. 1992 Nov 1;209(3):951–959. [PubMed]
  • Blázquez MA, Gancedo C. Identification of extragenic suppressors of the cif1 mutation in Saccharomyces cerevisiae. Curr Genet. 1994 Feb;25(2):89–94. [PubMed]
  • Blázquez MA, Lagunas R, Gancedo C, Gancedo JM. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 1993 Aug 23;329(1-2):51–54. [PubMed]
  • Broach JR, Strathern JN, Hicks JB. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. [PubMed]
  • Campbell-Burk SL, Shulman RG. High-resolution NMR studies of Saccharomyces cerevisiae. Annu Rev Microbiol. 1987;41:595–616. [PubMed]
  • Cannon JF, Pringle JR, Fiechter A, Khalil M. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics. 1994 Feb;136(2):485–503. [PMC free article] [PubMed]
  • Clifton D, Fraenkel DG. Mutant studies of yeast phosphofructokinase. Biochemistry. 1982 Apr 13;21(8):1935–1942. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • De Virgilio C, Bürckert N, Bell W, Jenö P, Boller T, Wiemken A. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem. 1993 Mar 1;212(2):315–323. [PubMed]
  • De Virgilio C, Simmen U, Hottiger T, Boller T, Wiemken A. Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Lett. 1990 Oct 29;273(1-2):107–110. [PubMed]
  • Donnini C, Puglisi PP, Vecli A, Marmiroli N. Germination of Saccharomyces cerevisiae ascospores without trehalose mobilization as revealed by in vivo 13C nuclear magnetic resonance spectroscopy. J Bacteriol. 1988 Aug;170(8):3789–3791. [PMC free article] [PubMed]
  • Elder RT, Loh EY, Davis RW. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc Natl Acad Sci U S A. 1983 May;80(9):2432–2436. [PMC free article] [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Gancedo JM, Clifton D, Fraenkel DG. Yeast hexokinase mutants. J Biol Chem. 1977 Jul 10;252(13):4443–4444. [PubMed]
  • González MI, Stucka R, Blázquez MA, Feldmann H, Gancedo C. Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. Yeast. 1992 Mar;8(3):183–192. [PubMed]
  • Grunstein M, Hogness DS. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. [PMC free article] [PubMed]
  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986 Sep;2(3):163–167. [PubMed]
  • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. [PubMed]
  • Inoue H, Shimoda C. Induction of trehalase activity on a nitrogen-free medium: a sporulation-specific event in the fission yeast, Schizosaccharomyces pombe. Mol Gen Genet. 1981;183(1):32–36. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Kane SM, Roth R. Carbohydrate metabolism during ascospore development in yeast. J Bacteriol. 1974 Apr;118(1):8–14. [PMC free article] [PubMed]
  • Kienle I, Burgert M, Holzer H. Assay of trehalose with acid trehalase purified from Saccharomyces cerevisiae. Yeast. 1993 Jun;9(6):607–611. [PubMed]
  • Londesborough J, Vuorio OE. Purification of trehalose synthase from baker's yeast. Its temperature-dependent activation by fructose 6-phosphate and inhibition by phosphate. Eur J Biochem. 1993 Sep 15;216(3):841–848. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Luyten K, de Koning W, Tesseur I, Ruiz MC, Ramos J, Cobbaert P, Thevelein JM, Hohmann S. Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Eur J Biochem. 1993 Oct 15;217(2):701–713. [PubMed]
  • Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 1993 Jan 15;123(1):127–130. [PubMed]
  • McDougall J, Kaasen I, Strøm AR. A yeast gene for trehalose-6-phosphate synthase and its complementation of an Escherichia coli otsA mutant. FEMS Microbiol Lett. 1993 Feb 15;107(1):25–30. [PubMed]
  • Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. [PubMed]
  • Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823. [PubMed]
  • Navon G, Shulman RG, Yamane T, Eccleshall TR, Lam KB, Baronofsky JJ, Marmur J. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry. 1979 Oct 16;18(21):4487–4499. [PubMed]
  • Panek AC, Vânia JJ, Paschoalin MF, Panek D. Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts. Biochimie. 1990 Jan;72(1):77–79. [PubMed]
  • Woods DR, Reid SJ. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev. 1993 Aug;11(4):273–283. [PubMed]
  • Roth R. Carbohydrate accumulation during the sporulation of yeast. J Bacteriol. 1970 Jan;101(1):53–57. [PMC free article] [PubMed]
  • Russell PR, Hall BD. Structure of the Schizosaccharomyces pombe cytochrome c gene. Mol Cell Biol. 1982 Feb;2(2):106–116. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Thomas BJ, Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. [PubMed]
  • van de Poll KW, Kerkenaar A, Schamhart DH. Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis. J Bacteriol. 1974 Mar;117(3):965–970. [PMC free article] [PubMed]
  • Vuorio OE, Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem. 1993 Sep 15;216(3):849–861. [PubMed]
  • Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek. 1990 Oct;58(3):209–217. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...