Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. May 1994; 176(9): 2596–2602.
PMCID: PMC205397

Acid-sensitive mutants of Salmonella typhimurium identified through a dinitrophenol lethal screening strategy.

Abstract

Salmonella typhimurium exhibits a low-pH-inducible acid tolerance response (ATR) that can protect the adapted cell from severe acid challenge (pH 3.3). It is a two-stage system, with some proteins induced at pH 5.8 (pre-acid shock) and others induced below pH 4.5 (acid shock). The genetics of acid resistance was investigated through the use of a new screening medium. The medium contained 200 microM dinitrophenol (DNP) and was adjusted to pH 4.7 to 4.8. The medium will lower the internal pH of cells to a lethal level. However, cells capable of mounting an ATR will survive longer on this medium than acid-intolerant cells. Using this DNP lethal screening strategy, we isolated several acid-sensitive insertion mutants. Some mutants were defective in the pre-acid shock ATR stage but exhibited a normal or nearly normal post-acid shock-induced acid tolerance (atrB and atrC). Others could not induce acid tolerance by using either pre- or post-acid shock strategies (atrD, atrF, and atrG). The atrB locus was found to be part of a regulon under the control of a trans-acting regulator, atbR. An insertion in atbR caused constitutive acid tolerance because of overexpression of the regulon. Mutations in atrD and atrF affected iron metabolism and, in a manner analogous to ferric uptake regulator (fur) mutations, diminished acid resistance. The atrF mutation mapped within the ent cluster, probably in a fep uptake locus. The atrD locus mapped near metC and may represent an insertion into the S. typhimurium homolog of the Escherichia coli exbB or exbD locus. The mutation in atrC caused extreme UV light sensitivity and proved to occur within the polA (DNA polymerase I) locus. The results support the concept of overlapping acid protection systems in S. typhimurium.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aliabadi Z, Warren F, Mya S, Foster JW. Oxygen-regulated stimulons of Salmonella typhimurium identified by Mu d(Ap lac) operon fusions. J Bacteriol. 1986 Mar;165(3):780–786. [PMC free article] [PubMed]
  • Auger EA, Redding KE, Plumb T, Childs LC, Meng SY, Bennett GN. Construction of lac fusions to the inducible arginine- and lysine decarboxylase genes of Escherichia coli K12. Mol Microbiol. 1989 May;3(5):609–620. [PubMed]
  • Benson NR, Goldman BS. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol. 1992 Mar;174(5):1673–1681. [PMC free article] [PubMed]
  • Eick-Helmerich K, Braun V. Import of biopolymers into Escherichia coli: nucleotide sequences of the exbB and exbD genes are homologous to those of the tolQ and tolR genes, respectively. J Bacteriol. 1989 Sep;171(9):5117–5126. [PMC free article] [PubMed]
  • Foster JW. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol. 1991 Nov;173(21):6896–6902. [PMC free article] [PubMed]
  • Foster JW. The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol. 1993 Apr;175(7):1981–1987. [PMC free article] [PubMed]
  • Foster JW, Aliabadi Z. pH-regulated gene expression in Salmonella: genetic analysis of aniG and cloning of the earA regulator. Mol Microbiol. 1989 Nov;3(11):1605–1615. [PubMed]
  • Foster JW, Hall HK. Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):771–778. [PMC free article] [PubMed]
  • Foster JW, Hall HK. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol. 1991 Aug;173(16):5129–5135. [PMC free article] [PubMed]
  • Foster JW, Hall HK. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol. 1992 Jul;174(13):4317–4323. [PMC free article] [PubMed]
  • Gage DJ, Neidhardt FC. Adaptation of Escherichia coli to the uncoupler of oxidative phosphorylation 2,4-dinitrophenol. J Bacteriol. 1993 Nov;175(21):7105–7108. [PMC free article] [PubMed]
  • Groisman EA, Casadaban MJ. Mini-mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusing. J Bacteriol. 1986 Oct;168(1):357–364. [PMC free article] [PubMed]
  • Hickey EW, Hirshfield IN. Low-pH-induced effects on patterns of protein synthesis and on internal pH in Escherichia coli and Salmonella typhimurium. Appl Environ Microbiol. 1990 Apr;56(4):1038–1045. [PMC free article] [PubMed]
  • Hughes KT, Roth JR. Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics. 1988 May;119(1):9–12. [PMC free article] [PubMed]
  • Joyce CM, Grindley ND. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol. 1984 May;158(2):636–643. [PMC free article] [PubMed]
  • Kampfenkel K, Braun V. Topology of the ExbB protein in the cytoplasmic membrane of Escherichia coli. J Biol Chem. 1993 Mar 15;268(8):6050–6057. [PubMed]
  • Lifsics MR, Lancy ED, Jr, Maurer R. DNA replication defect in Salmonella typhimurium mutants lacking the editing (epsilon) subunit of DNA polymerase III. J Bacteriol. 1992 Nov;174(21):6965–6973. [PMC free article] [PubMed]
  • Lindahl T, Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. [PubMed]
  • Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. [PubMed]
  • Raja N, Goodson M, Chui WC, Smith DG, Rowbury RJ. Habituation to acid in Escherichia coli: conditions for habituation and its effects on plasmid transfer. J Appl Bacteriol. 1991 Jan;70(1):59–65. [PubMed]
  • Schlensog V, Böck A. Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol. 1990 Aug;4(8):1319–1327. [PubMed]
  • Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan;160(1):47–56. [PubMed]
  • Spector MP, Aliabadi Z, Gonzalez T, Foster JW. Global control in Salmonella typhimurium: two-dimensional electrophoretic analysis of starvation-, anaerobiosis-, and heat shock-inducible proteins. J Bacteriol. 1986 Oct;168(1):420–424. [PMC free article] [PubMed]
  • VOGEL HJ, BONNER DM. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed]
  • Watson N, Dunyak DS, Rosey EL, Slonczewski JL, Olson ER. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol. 1992 Jan;174(2):530–540. [PMC free article] [PubMed]
  • Youderian P, Sugiono P, Brewer KL, Higgins NP, Elliott T. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics. 1988 Apr;118(4):581–592. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...