• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Mar 1994; 176(6): 1761–1763.
PMCID: PMC205265

Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome.


Delivery vectors for mini-Tn10 transposons function in Bacillus subtilis (M. A. Petit, C. Bruand, L. Janniére, and S. D. Ehrlich, J. Bacteriol. 172:6736-6740, 1990). Using this system, we identified a new gene (sytA) whose inactivation affected regulation of genes of sucrose metabolism. For cloning the sytA::Tn10 insertion in Escherichia coli, we developed a methodology similar to that commonly used for B. subtilis Tn917 insertions. We constructed a plasmid which can be used to insert (by in vivo recombination) a ColE1 origin linked to a spectinomycin resistance gene (ori-spc element) into mini-Tn10 transposons inserted into the B. subtilis chromosome. DNA extracted from a sytA::Tn10::ori-spc transformant was cut with restriction enzymes that do not cut into the Tn10::ori-spc sequence; plasmids containing the sytA::Tn10 insertion were cloned by self-ligation, followed by transformation of E. coli. To obtain the wild-type sytA region, one of these plasmids was ligated with an E. coli-B. subtilis shuttle vector conferring erythromycin resistance, and the hybrid was used to transform the wild-type B. subtilis strain. Erythromycin-resistant transformants, detected as spectinomycin sensitive, resulted from conversion of the insertion mutation by the resident wild-type locus. The shuttle plasmid containing the wild-type locus could then be recovered in E. coli.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (522K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aymerich S, Steinmetz M. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10410–10414. [PMC free article] [PubMed]
  • Bender J, Kleckner N. IS10 transposase mutations that specifically alter target site recognition. EMBO J. 1992 Feb;11(2):741–750. [PMC free article] [PubMed]
  • Camilli A, Portnoy A, Youngman P. Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol. 1990 Jul;172(7):3738–3744. [PMC free article] [PubMed]
  • Crutz AM, Steinmetz M, Aymerich S, Richter R, Le Coq D. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol. 1990 Feb;172(2):1043–1050. [PMC free article] [PubMed]
  • Debarbouille M, Arnaud M, Fouet A, Klier A, Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol. 1990 Jul;172(7):3966–3973. [PMC free article] [PubMed]
  • Maguin E, Duwat P, Hege T, Ehrlich D, Gruss A. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992 Sep;174(17):5633–5638. [PMC free article] [PubMed]
  • Murphy E, Huwyler L, de Freire Bastos M do C. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 1985 Dec 1;4(12):3357–3365. [PMC free article] [PubMed]
  • Petit MA, Bruand C, Jannière L, Ehrlich SD. Tn10-derived transposons active in Bacillus subtilis. J Bacteriol. 1990 Dec;172(12):6736–6740. [PMC free article] [PubMed]
  • Steinmetz M, Le Coq D, Aymerich S. Induction of saccharolytic enzymes by sucrose in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways. J Bacteriol. 1989 Mar;171(3):1519–1523. [PMC free article] [PubMed]
  • Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...