• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Apr 1993; 175(7): 2102–2106.
PMCID: PMC204315

Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase.

Abstract

One of the major proteins of the Saccharomyces cerevisiae cell wall, a beta-glucanase (BGL2 gene product), has been isolated and purified to homogeneity under conditions for preserving enzyme activity. The study of enzyme properties of the protein revealed that it is an endo-beta-1,3-glucanase and not an exoglucanase as reported previously (F. Klebl and W. Tanner, J. Bacteriol. 171:6259-6264, 1989). The examination of the glucanase structure showed that the lower apparent molecular mass of the protein (29 kDa) compared with what was calculated from the amino acid sequence of the enzyme (33.5 kDa) is due to anomalous migration in sodium dodecyl sulfate gels and not to posttranslational processing of the polypeptide chain. Of two potential N glycosylation sites at Asn-202 and Asn-284, only the latter site is glycosylated. The overproduction of the beta-glucanase from the high-copy-number plasmid brought about a significant decrease in the growth rate of transformed yeast cells.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (858K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Burnette WN. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. [PubMed]
  • Dunn SD. Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal Biochem. 1986 Aug 15;157(1):144–153. [PubMed]
  • Emr SD, Schekman R, Flessel MC, Thorner J. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7080–7084. [PMC free article] [PubMed]
  • Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. [PubMed]
  • Klebl F, Tanner W. Molecular cloning of a cell wall exo-beta-1,3-glucanase from Saccharomyces cerevisiae. J Bacteriol. 1989 Nov;171(11):6259–6264. [PMC free article] [PubMed]
  • Kuranda MJ, Robbins PW. Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1987 May;84(9):2585–2589. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Mrsa V, Ugarković T, Barbarić S. Binding of Saccharomyces cerevisiae extracellular proteins to glucane. Arch Biochem Biophys. 1992 Aug 1;296(2):569–574. [PubMed]
  • Nebreda AR, Villa TG, Villanueva JR, del Rey F. Cloning of genes related to exo-beta-glucanase production in Saccharomyces cerevisiae: characterization of an exo-beta-glucanase structural gene. Gene. 1986;47(2-3):245–259. [PubMed]
  • Roitsch T, Lehle L. Post-translational translocation of polypeptides across the mammalian endoplasmic reticulum membrane is size and ribosome dependent. Eur J Biochem. 1988 Jul 1;174(4):699–705. [PubMed]
  • Shinshi H, Wenzler H, Neuhaus JM, Felix G, Hofsteenge J, Meins F. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5541–5545. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...