• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molmedLink to Publisher's site
Mol Med. Feb 2002; 8(2): 95–102.
PMCID: PMC2039972

Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells.

Abstract

BACKGROUND: Peroxiredoxins (Prxs) are antioxidant enzymes expressed by most free-living organisms, often in multiple isoforms. Because mammalian Prxs have not been experimentally deleted or inhibited, it is not known how much they contribute to antioxidant defense, nor whether the multiple isoforms afford redundant or additive protection. MATERIALS AND METHODS: Expression of the four members of the 2-Cys family of human Prxs was tested in human tumor cell lines. Monospecific antibodies were developed and used to monitor the extent and specificity of inhibition of expression of each isoform in prostate cancer cells stably transfected with antisense constructs. RESULTS: Seventeen tumor lines transcribed genes for all four human Prxs. Prostate cancer cells coexpressed each isoform at the protein level. Stable transfection with antisense allowed partial, selective suppression of Prx 1, 2, 3, or 4. Prostate cancer cells were rendered more sensitive to hydrogen peroxide or an organic hydroperoxide when Prx 1, 2, or 3 but not 4 was partially suppressed, bringing them into the range of sensitivity of mouse cells. The effect of partially suppressing a single Prx was comparable to that of depleting glutathione. In contrast, sensitization to adriamycin, an antitumor agent with a redox-active quinone, followed the partial suppression of Prxs 1, 2, or 4 but not 3. Individual suppression of Prxs 1-4 had no effect on sensitivity of the cells to reactive nitrogen intermediates, tumor necrosis factor (TNF), paclitaxel (Taxol), or etoposide. CONCLUSIONS: The 2-Cys Prxs act in a mutually nonredundant and sometimes stress-specific fashion to protect human cells from oxidant injury. The substantial resistance of human cells to hydroperoxides may result in part from the additive action of multiple Prxs.

Full Text

The Full Text of this article is available as a PDF (218K).

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...