• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. Jul 1986; 52(1): 169–172.
PMCID: PMC203431

Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum

Abstract

Fermentation of whey by Clostridium acetobutylicum yielded butanol and acetone in a ratio of approximately 100:1. This ratio amounted to only 2:1 in synthetic media with glucose, lactose, or glucose plus galactose as substrates. Removal of citrate from whey and addition of minerals resulted in an increase in the amount of acetone produced. Experiments carried out in a chemostat with a low-phosphate synthetic medium revealed that the butanol/acetone ratio could be increased from 2:1 to 3.8:1 by cofermentation of l-lactate and from 2:1 to 8:1 by iron limitation. The performance of the fermentation in a low-iron glucose medium above pH 5.1 yielded l-lactate as the main product.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (746K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Antranikian G, Gottschalk G. Copurification of citrate lyase and citrate lyase ligase from Rhodopseudomonas gelatinosa and subsequent separation of the two enzymes. Eur J Biochem. 1982 Aug;126(1):43–47. [PubMed]
  • Datta R, Zeikus JG. Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids. Appl Environ Microbiol. 1985 Mar;49(3):522–529. [PMC free article] [PubMed]
  • George HA, Chen JS. Acidic Conditions Are Not Obligatory for Onset of Butanol Formation by Clostridium beijerinckii (Synonym, C. butylicum). Appl Environ Microbiol. 1983 Aug;46(2):321–327. [PMC free article] [PubMed]
  • Gottschalk G, Bahl H. Feasible improvements of the butanol production by Clostridium acetobutylicum. Basic Life Sci. 1981;18:463–471. [PubMed]
  • Gottwald M, Hippe H, Gottschalk G. Formation of n-Butanol from d-Glucose by Strains of the "Clostridium tetanomorphum" Group. Appl Environ Microbiol. 1984 Sep;48(3):573–576. [PMC free article] [PubMed]
  • Holt RA, Stephens GM, Morris JG. Production of Solvents by Clostridium acetobutylicum Cultures Maintained at Neutral pH. Appl Environ Microbiol. 1984 Dec;48(6):1166–1170. [PMC free article] [PubMed]
  • Kim BH, Bellows P, Datta R, Zeikus JG. Control of Carbon and Electron Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon Monoxide to Inhibit Hydrogen Production and to Enhance Butanol Yields. Appl Environ Microbiol. 1984 Oct;48(4):764–770. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...