• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. Jan 1994; 60(1): 39–44.
PMCID: PMC201266

Intracellular Concentrations of Coenzyme A and Its Derivatives from Clostridium acetobutylicum ATCC 824 and Their Roles in Enzyme Regulation


Intracellular levels of coenzyme A (CoA) and its derivatives involved in the metabolic pathways for Clostridium acetobutylicum ATCC 824 were analyzed by using reverse-phase high-performance liquid chromatography (HPLC). During the shift from the acidogenic to the solventogenic or stationary growth phase, the concentration of butyryl-CoA increased rapidly and the concentrations of free CoA and acetyl-CoA decreased. These changes were accompanied by a rapid increase of the solvent pathway enzyme activity and a decrease of the acid pathway enzyme activity. Assays with several non-solvent-producing mutant strains were also carried out. Upon entry of the mutant strains to the stationary phase, the butyryl-CoA concentrations for these mutant strains were comparable to those for the wild type even though the mutants were deficient in solvent-producing enzymes. Levels of acetoacetyl-CoA, β-hydroxy-butyryl-CoA, and crotonyl-CoA compounds in both wild-type and mutant extracts were below HPLC detection thresholds (<21 μM).

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Clark SW, Bennett GN, Rudolph FB. Isolation and Characterization of Mutants of Clostridium acetobutylicum ATCC 824 Deficient in Acetoacetyl-Coenzyme A:Acetate/Butyrate:Coenzyme A-Transferase (EC and in Other Solvent Pathway Enzymes. Appl Environ Microbiol. 1989 Apr;55(4):970–976. [PMC free article] [PubMed]
  • Colby GD, Chen JS. Purification and properties of 3-hydroxybutyryl-coenzyme A dehydrogenase from Clostridium beijerinckii ("Clostridium butylicum") NRRL B593. Appl Environ Microbiol. 1992 Oct;58(10):3297–3302. [PMC free article] [PubMed]
  • Datta R, Zeikus JG. Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids. Appl Environ Microbiol. 1985 Mar;49(3):522–529. [PMC free article] [PubMed]
  • Davies R. Studies on the acetone-butyl alcohol fermentation: Intermediates in the fermentation of glucose by Cl. acetobutylicum. 3. Potassium as an essential factor in the fermentation of maize meal by Cl. acetobutylicum (BY). Biochem J. 1942 Sep;36(7-9):582–599. [PMC free article] [PubMed]
  • Davies R, Stephenson M. Studies on the acetone-butyl alcohol fermentation: Nutritional and other factors involved in the preparation of active suspensions of Cl. acetobutylicum (Weizmann). Biochem J. 1941 Dec;35(12):1320–1331. [PMC free article] [PubMed]
  • Grupe H, Gottschalk G. Physiological Events in Clostridium acetobutylicum during the Shift from Acidogenesis to Solventogenesis in Continuous Culture and Presentation of a Model for Shift Induction. Appl Environ Microbiol. 1992 Dec;58(12):3896–3902. [PMC free article] [PubMed]
  • Hartmanis MG, Gatenbeck S. Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate. Appl Environ Microbiol. 1984 Jun;47(6):1277–1283. [PMC free article] [PubMed]
  • Huang L, Gibbins LN, Forsberg CW. Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions. Appl Environ Microbiol. 1985 Oct;50(4):1043–1047. [PMC free article] [PubMed]
  • Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev. 1986 Dec;50(4):484–524. [PMC free article] [PubMed]
  • Jungermann K, Rupprecht E, Ohrloff C, Thauer R, Decker K. Regulation of the reduced nicotinamide adenine dinucleotide-ferredoxin reductase system in Clostridium kluyveri. J Biol Chem. 1971 Feb 25;246(4):960–963. [PubMed]
  • Jungermann K, Thauer RK, Leimenstoll G, Decker K. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta. 1973 May 30;305(2):268–280. [PubMed]
  • King MT, Reiss PD. Separation and measurement of short-chain coenzyme-A compounds in rat liver by reversed-phase high-performance liquid chromatography. Anal Biochem. 1985 Apr;146(1):173–179. [PubMed]
  • Palosaari NR, Rogers P. Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol. 1988 Jul;170(7):2971–2976. [PMC free article] [PubMed]
  • ROSENFELD B, SIMON E. The mechanism of the butanol-acetone fermentation. II. Phosphoenolpyruvate as a new intermediate. J Biol Chem. 1950 Sep;186(1):405–410. [PubMed]
  • Terracciano JS, Kashket ER. Intracellular Conditions Required for Initiation of Solvent Production by Clostridium acetobutylicum. Appl Environ Microbiol. 1986 Jul;52(1):86–91. [PMC free article] [PubMed]
  • Thompson DK, Chen JS. Purification and properties of an acetoacetyl coenzyme A-reacting phosphotransbutyrylase from Clostridium beijerinckii ("Clostridium butylicum") NRRL B593. Appl Environ Microbiol. 1990 Mar;56(3):607–613. [PMC free article] [PubMed]
  • Waterson RM, Castellino FJ, Hass GM, Hill RL. Purification and characterization of crotonase from Clostridium acetobutylicum. J Biol Chem. 1972 Aug 25;247(16):5266–5271. [PubMed]
  • Wiesenborn DP, Rudolph FB, Papoutsakis ET. Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents. Appl Environ Microbiol. 1988 Nov;54(11):2717–2722. [PMC free article] [PubMed]
  • Wiesenborn DP, Rudolph FB, Papoutsakis ET. Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl Environ Microbiol. 1989 Feb;55(2):317–322. [PMC free article] [PubMed]
  • Wiesenborn DP, Rudolph FB, Papoutsakis ET. Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol. 1989 Feb;55(2):323–329. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)


Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...