• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. Apr 1996; 70(4): 2562–2568.
PMCID: PMC190102

The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies.

Abstract

EBNA-5 is one of the Epstein-Barr virus (EBV)-encoded nuclear proteins required for immortalization of human B lymphocytes. In the nuclei of EBV-transformed lymphoblastoid cell lines EBNA-5 is preferentially targetted to distinct nuclear foci. Previously we have shown (W.Q. Jiang, L. Szekely, V. Wendel-Hansen, N. Ringertz, G. Klein, and A. Rosen, Exp. Cell Res. 197:314-318, 1991) that the same foci also contained the retinoblastoma (Rb) protein. Using a similar double immunofluorescence technique, we now show that these foci colocalize with nuclear bodies positive for PML, the promyelocytic leukemia-associated protein. Artificial spreading of the chromatin by exposure to the forces of fluid surface tension disrupts this colocalization gradually, suggesting that the bodies consist of at least two subcomponents. Heat shock or metabolic stress induced by high cell density leads to the release of EBNA-5 from the PML-positive nuclear bodies and induces it to translocate to the nucleoli. In addition to their presence in nuclear bodies, both proteins are occasionally present in nuclear aggregates and doughnut-like structures in which PML is concentrated in an outer shell. Nuclear bodies with prominent PML staining are seen in resting B lymphocytes. This staining pattern does not change upon EBV infection. In freshly infected cells EBNA-5 antigens are first distributed throughout the nucleoplasm. After a few days intensely staining foci develop. These foci coincide with PML-positive nuclear bodies. At a later stage and in established lymphoblastoid cell lines EBNA-5 is almost exclusively present in the PML-positive nuclear foci. The colocalization is restricted to EBV-infected human lymphoblasts. The data presented indicate that the distinct EBNA-5 foci are not newly formed structures but the result of translocation of the viral protein to a specialized domain present already in the nuclei of uninfected cells.

Full Text

The Full Text of this article is available as a PDF (503K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alfieri C, Birkenbach M, Kieff E. Early events in Epstein-Barr virus infection of human B lymphocytes. Virology. 1991 Apr;181(2):595–608. [PubMed]
  • Allday MJ, Crawford DH, Griffin BE. Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol. 1989 Jul;70(Pt 7):1755–1764. [PubMed]
  • Brasch K, Ochs RL. Nuclear bodies (NBs): a newly "rediscovered" organelle. Exp Cell Res. 1992 Oct;202(2):211–223. [PubMed]
  • Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjärvi G, Carmo-Fonseca M, Dejean A. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol. 1995 Oct;131(1):45–56. [PMC free article] [PubMed]
  • Cohen JI, Wang F, Mannick J, Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9558–9562. [PMC free article] [PubMed]
  • Daniel MT, Koken M, Romagné O, Barbey S, Bazarbachi A, Stadler M, Guillemin MC, Degos L, Chomienne C, de Thé H. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood. 1993 Sep 15;82(6):1858–1867. [PubMed]
  • de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991 Aug 23;66(4):675–684. [PubMed]
  • de THE, RIVIERE M, BERNHARD W. [Examination by electron microscope of the VX2 tumor of the domestic rabbit derived from the Shope papilloma]. Bull Assoc Fr Etud Cancer. 1960 Oct-Dec;47:570–584. [PubMed]
  • Dyck JA, Maul GG, Miller WH, Jr, Chen JD, Kakizuka A, Evans RM. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell. 1994 Jan 28;76(2):333–343. [PubMed]
  • Everett RD, Maul GG. HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO J. 1994 Nov 1;13(21):5062–5069. [PMC free article] [PubMed]
  • Finke J, Rowe M, Kallin B, Ernberg I, Rosén A, Dillner J, Klein G. Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. J Virol. 1987 Dec;61(12):3870–3878. [PMC free article] [PubMed]
  • Guldner HH, Szostecki C, Grötzinger T, Will H. IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis. J Immunol. 1992 Dec 15;149(12):4067–4073. [PubMed]
  • Jiang WQ, Szekely L, Wendel-Hansen V, Ringertz N, Klein G, Rosén A. Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res. 1991 Dec;197(2):314–318. [PubMed]
  • Jiang WQ, Wendel-Hansen V, Lundkvist A, Ringertz N, Klein G, Rosén A. Intranuclear distribution of Epstein-Barr virus-encoded nuclear antigens EBNA-1, -2, -3 and -5. J Cell Sci. 1991 Jul;99(Pt 3):497–502. [PubMed]
  • Kakizuka A, Miller WH, Jr, Umesono K, Warrell RP, Jr, Frankel SR, Murty VV, Dmitrovsky E, Evans RM. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991 Aug 23;66(4):663–674. [PubMed]
  • Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C, et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 1994 Mar 1;13(5):1073–1083. [PMC free article] [PubMed]
  • Koken MH, Linares-Cruz G, Quignon F, Viron A, Chelbi-Alix MK, Sobczak-Thépot J, Juhlin L, Degos L, Calvo F, de Thé H. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene. 1995 Apr 6;10(7):1315–1324. [PubMed]
  • Korioth F, Gieffers C, Maul GG, Frey J. Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J Cell Biol. 1995 Jul;130(1):1–13. [PMC free article] [PubMed]
  • Mannick JB, Cohen JI, Birkenbach M, Marchini A, Kieff E. The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol. 1991 Dec;65(12):6826–6837. [PMC free article] [PubMed]
  • Maul GG, Everett RD. The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J Gen Virol. 1994 Jun;75(Pt 6):1223–1233. [PubMed]
  • Mu ZM, Chin KV, Liu JH, Lozano G, Chang KS. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol. 1994 Oct;14(10):6858–6867. [PMC free article] [PubMed]
  • Mullen MA, Gerstberger S, Ciufo DM, Mosca JD, Hayward GS. Evaluation of colocalization interactions between the IE110, IE175, and IE63 transactivator proteins of herpes simplex virus within subcellular punctate structures. J Virol. 1995 Jan;69(1):476–491. [PMC free article] [PubMed]
  • Petti L, Sample C, Kieff E. Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology. 1990 Jun;176(2):563–574. [PubMed]
  • Sinclair AJ, Palmero I, Peters G, Farrell PJ. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J. 1994 Jul 15;13(14):3321–3328. [PMC free article] [PubMed]
  • Szekely L, Jiang WQ, Pokrovskaja K, Wiman KG, Klein G, Ringertz N. Reversible nucleolar translocation of Epstein-Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion. J Gen Virol. 1995 Oct;76(Pt 10):2423–2432. [PubMed]
  • Szekely L, Pokrovskaja K, Jiang WQ, Selivanova G, Löwbeer M, Ringertz N, Wiman KG, Klein G. Resting B-cells, EBV-infected B-blasts and established lymphoblastoid cell lines differ in their Rb, p53 and EBNA-5 expression patterns. Oncogene. 1995 May 4;10(9):1869–1874. [PubMed]
  • Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG. EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5455–5459. [PMC free article] [PubMed]
  • Thiry M. Nucleic acid compartmentalization within the cell nucleus by in situ transferase-immunogold techniques. Microsc Res Tech. 1995 May 1;31(1):4–21. [PubMed]
  • Tomkinson B, Robertson E, Kieff E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol. 1993 Apr;67(4):2014–2025. [PMC free article] [PubMed]
  • Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell. 1994 Jan 28;76(2):345–356. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...