Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. Oct 1995; 69(10): 6314–6322.
PMCID: PMC189530

Retroviral retargeting by envelopes expressing an N-terminal binding domain.

Abstract

We have engineered ecotropic Moloney murine leukemia virus-derived envelopes targeted to cell surface molecules expressed on human cells by the N-terminal insertion of polypeptides able to bind either Ram-1 phosphate transporter (the first 208 amino acids of amphotropic murine leukemia virus surface protein) or epidermal growth factor receptor (EGFR) (the 53 amino acids of EGF). Both envelopes were correctly processed and incorporated into viral particles. Virions carrying these envelopes could specifically bind the new cell surface receptors. Virions targeted to Ram-1 could infect human cells, although the efficiency was reduced compared with that of virions carrying wild-type amphotropic murine leukemia virus envelopes. The infectivity of virions targeted to EGFR was blocked at a postbinding step, and our results suggest that EGFR-bound virions were rapidly trafficked to lysosomes. These data suggest that retroviruses require specific properties of cell surface molecules to allow the release of viral cores into the correct cell compartment.

Full Text

The Full Text of this article is available as a PDF (290K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Albritton LM, Tseng L, Scadden D, Cunningham JM. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell. 1989 May 19;57(4):659–666. [PubMed]
  • Andersen KB, Nexø BA. Entry of murine retrovirus into mouse fibroblasts. Virology. 1983 Feb;125(1):85–98. [PubMed]
  • Battini JL, Danos O, Heard JM. Receptor-binding domain of murine leukemia virus envelope glycoproteins. J Virol. 1995 Feb;69(2):713–719. [PMC free article] [PubMed]
  • Battini JL, Heard JM, Danos O. Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J Virol. 1992 Mar;66(3):1468–1475. [PMC free article] [PubMed]
  • Bell GI, Fong NM, Stempien MM, Wormsted MA, Caput D, Ku LL, Urdea MS, Rall LB, Sanchez-Pescador R. Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res. 1986 Nov 11;14(21):8427–8446. [PMC free article] [PubMed]
  • Bullough PA, Hughson FM, Skehel JJ, Wiley DC. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. [PubMed]
  • Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990 May 15;265(14):7709–7712. [PubMed]
  • Chen WS, Lazar CS, Lund KA, Welsh JB, Chang CP, Walton GM, Der CJ, Wiley HS, Gill GN, Rosenfeld MG. Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation. Cell. 1989 Oct 6;59(1):33–43. [PubMed]
  • Chu TH, Dornburg R. Retroviral vector particles displaying the antigen-binding site of an antibody enable cell-type-specific gene transfer. J Virol. 1995 Apr;69(4):2659–2663. [PMC free article] [PubMed]
  • Chu TH, Martinez I, Sheay WC, Dornburg R. Cell targeting with retroviral vector particles containing antibody-envelope fusion proteins. Gene Ther. 1994 Sep;1(5):292–299. [PubMed]
  • Clements GJ, Price-Jones MJ, Stephens PE, Sutton C, Schulz TF, Clapham PR, McKeating JA, McClure MO, Thomson S, Marsh M, et al. The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion? AIDS Res Hum Retroviruses. 1991 Jan;7(1):3–16. [PubMed]
  • Cosset FL, Girod A, Flamant F, Drynda A, Ronfort C, Valsesia S, Molina RM, Faure C, Nigon VM, Verdier G. Use of helper cells with two host ranges to generate high-titer retroviral vectors. Virology. 1993 Mar;193(1):385–395. [PubMed]
  • Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. [PubMed]
  • Dyer MJ, Fischer P, Nacheva E, Labastide W, Karpas A. A new human B-cell non-Hodgkin's lymphoma cell line (Karpas 422) exhibiting both t (14;18) and t(4;11) chromosomal translocations. Blood. 1990 Feb 1;75(3):709–714. [PubMed]
  • Etienne-Julan M, Roux P, Carillo S, Jeanteur P, Piechaczyk M. The efficiency of cell targeting by recombinant retroviruses depends on the nature of the receptor and the composition of the artificial cell-virus linker. J Gen Virol. 1992 Dec;73(Pt 12):3251–3255. [PubMed]
  • Gatignol A, Durand H, Tiraby G. Bleomycin resistance conferred by a drug-binding protein. FEBS Lett. 1988 Mar 28;230(1-2):171–175. [PubMed]
  • Gliniak BC, Kozak SL, Jones RT, Kabat D. Disulfide bonding controls the processing of retroviral envelope glycoproteins. J Biol Chem. 1991 Dec 5;266(34):22991–22997. [PubMed]
  • Kasahara N, Dozy AM, Kan YW. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science. 1994 Nov 25;266(5189):1373–1376. [PubMed]
  • Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7071–7075. [PMC free article] [PubMed]
  • Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984 Dec 20;312(5996):767–768. [PubMed]
  • Mann R, Mulligan RC, Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. [PubMed]
  • Markowitz D, Goff S, Bank A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology. 1988 Dec;167(2):400–406. [PubMed]
  • Marsh M, Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. [PubMed]
  • McClure MO, Sommerfelt MA, Marsh M, Weiss RA. The pH independence of mammalian retrovirus infection. J Gen Virol. 1990 Apr;71(Pt 4):767–773. [PubMed]
  • Miller DG, Edwards RH, Miller AD. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):78–82. [PMC free article] [PubMed]
  • Miller DG, Miller AD. A family of retroviruses that utilize related phosphate transporters for cell entry. J Virol. 1994 Dec;68(12):8270–8276. [PMC free article] [PubMed]
  • Moore JP, McKeating JA, Norton WA, Sattentau QJ. Direct measurement of soluble CD4 binding to human immunodeficiency virus type 1 virions: gp120 dissociation and its implications for virus-cell binding and fusion reactions and their neutralization by soluble CD4. J Virol. 1991 Mar;65(3):1133–1140. [PMC free article] [PubMed]
  • Nussbaum O, Roop A, Anderson WF. Sequences determining the pH dependence of viral entry are distinct from the host range-determining region of the murine ecotropic and amphotropic retrovirus envelope proteins. J Virol. 1993 Dec;67(12):7402–7405. [PMC free article] [PubMed]
  • O'Hara B, Johann SV, Klinger HP, Blair DG, Rubinson H, Dunn KJ, Sass P, Vitek SM, Robins T. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. 1990 Mar;1(3):119–127. [PubMed]
  • Ott D, Friedrich R, Rein A. Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. J Virol. 1990 Feb;64(2):757–766. [PMC free article] [PubMed]
  • Ott D, Rein A. Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU. J Virol. 1992 Aug;66(8):4632–4638. [PMC free article] [PubMed]
  • Russell SJ, Hawkins RE, Winter G. Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 1993 Mar 11;21(5):1081–1085. [PMC free article] [PubMed]
  • Sattentau QJ, Clapham PR, Weiss RA, Beverley PC, Montagnier L, Alhalabi MF, Gluckmann JC, Klatzmann D. The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS. 1988 Apr;2(2):101–105. [PubMed]
  • Sattentau QJ, Moore JP. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med. 1991 Aug 1;174(2):407–415. [PMC free article] [PubMed]
  • Schneider CA, Lim RW, Terwilliger E, Herschman HR. Epidermal growth factor-nonresponsive 3T3 variants do not contain epidermal growth factor receptor-related antigens or mRNA. Proc Natl Acad Sci U S A. 1986 Jan;83(2):333–336. [PMC free article] [PubMed]
  • Shinnick TM, Lerner RA, Sutcliffe JG. Nucleotide sequence of Moloney murine leukaemia virus. Nature. 1981 Oct 15;293(5833):543–548. [PubMed]
  • Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson IA, Wiley DC. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci U S A. 1982 Feb;79(4):968–972. [PMC free article] [PubMed]
  • Sommerfelt MA, Weiss RA. Receptor interference groups of 20 retroviruses plating on human cells. Virology. 1990 May;176(1):58–69. [PubMed]
  • Tailor CS, Takeuchi Y, O'Hara B, Johann SV, Weiss RA, Collins MK. Mutation of amino acids within the gibbon ape leukemia virus (GALV) receptor differentially affects feline leukemia virus subgroup B, simian sarcoma-associated virus, and GALV infections. J Virol. 1993 Nov;67(11):6737–6741. [PMC free article] [PubMed]
  • Takeuchi Y, Cosset FL, Lachmann PJ, Okada H, Weiss RA, Collins MK. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol. 1994 Dec;68(12):8001–8007. [PMC free article] [PubMed]
  • Takeuchi Y, Vile RG, Simpson G, O'Hara B, Collins MK, Weiss RA. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J Virol. 1992 Feb;66(2):1219–1222. [PMC free article] [PubMed]
  • Valsesia-Wittmann S, Drynda A, Deléage G, Aumailley M, Heard JM, Danos O, Verdier G, Cosset FL. Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J Virol. 1994 Jul;68(7):4609–4619. [PMC free article] [PubMed]
  • van Zeijl M, Johann SV, Closs E, Cunningham J, Eddy R, Shows TB, O'Hara B. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1168–1172. [PMC free article] [PubMed]
  • Wang H, Kavanaugh MP, North RA, Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature. 1991 Aug 22;352(6337):729–731. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...