• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. Jul 1995; 69(7): 4137–4141.
PMCID: PMC189149

The YXXL signalling motifs of the bovine leukemia virus transmembrane protein are required for in vivo infection and maintenance of high viral loads.

Abstract

The bovine leukemia virus (BLV) transmembrane protein (gp30) contains three YXXL motifs at its carboxyterminal end. Two of these motifs have been implicated in vitro in signal transduction pathways from the external to the intracellular compartment. In order to analyze the biological relevance of these motifs in vivo, recombinant BLV proviruses were constructed. A mutation of the tyrosine residue of the second YXXL motif completely destroyed the infectious potential of the virus in sheep. In contrast, the tyrosine of the first motif appeared to be dispensable for infectivity. However, the propagation of the recombinant virus within the animal was greatly impaired (as demonstrated by PCR and enzyme-linked immunosorbent assay). These recombinant BLVs thus exhibit an attenuated phenotype. Altogether, our data demonstrate the importance of the YXXL motifs of the BLV transmembrane protein for in vivo infection and viral propagation.

Full Text

The Full Text of this article is available as a PDF (248K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alber G, Kim KM, Weiser P, Riesterer C, Carsetti R, Reth M. Molecular mimicry of the antigen receptor signalling motif by transmembrane proteins of the Epstein-Barr virus and the bovine leukaemia virus. Curr Biol. 1993 Jun 1;3(6):333–339. [PubMed]
  • Alexandersen S, Carpenter S, Christensen J, Storgaard T, Viuff B, Wannemuehler Y, Belousov J, Roth JA. Identification of alternatively spliced mRNAs encoding potential new regulatory proteins in cattle infected with bovine leukemia virus. J Virol. 1993 Jan;67(1):39–52. [PMC free article] [PubMed]
  • Beaufils P, Choquet D, Mamoun RZ, Malissen B. The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO J. 1993 Dec 15;12(13):5105–5112. [PMC free article] [PubMed]
  • Derse D, Mikovits J, Polianova M, Felber BK, Ruscetti F. Virions released from cells transfected with a molecular clone of human T-cell leukemia virus type I give rise to primary and secondary infections of T cells. J Virol. 1995 Mar;69(3):1907–1912. [PMC free article] [PubMed]
  • Harrell RA, Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman R. Suppression of the respiratory burst of human monocytes by a synthetic peptide homologous to envelope proteins of human and animal retroviruses. J Immunol. 1986 May 15;136(10):3517–3520. [PubMed]
  • Harris DT, Cianciolo GJ, Snyderman R, Argov S, Koren HS. Inhibition of human natural killer cell activity by a synthetic peptide homologous to a conserved region in the retroviral protein, p15E. J Immunol. 1987 Feb 1;138(3):889–894. [PubMed]
  • Kimata JT, Wong FH, Wang JJ, Ratner L. Construction and characterization of infectious human T-cell leukemia virus type 1 molecular clones. Virology. 1994 Nov 1;204(2):656–664. [PubMed]
  • Kleinerman ES, Lachman LB, Knowles RD, Snyderman R, Cianciolo GJ. A synthetic peptide homologous to the envelope proteins of retroviruses inhibits monocyte-mediated killing by inactivating interleukin 1. J Immunol. 1987 Oct 1;139(7):2329–2337. [PubMed]
  • Kushida S, Mizusawa H, Matsumura M, Tanaka H, Ami Y, Hori M, Yagami K, Kameyama T, Tanaka Y, Yoshida A, et al. High incidence of HAM/TSP-like symptoms in WKA rats after administration of human T-cell leukemia virus type 1-producing cells. J Virol. 1994 Nov;68(11):7221–7226. [PMC free article] [PubMed]
  • Ogasawara M, Cianciolo GJ, Snyderman R, Mitani M, Good RA, Day NK. Human IFN-gamma production is inhibited by a synthetic peptide homologous to retroviral envelope protein. J Immunol. 1988 Jul 15;141(2):614–619. [PubMed]
  • Portetelle D, Limbach K, Burny A, Mammerickx M, Desmettre P, Riviere M, Zavada J, Paoletti E. Recombinant vaccinia virus expression of the bovine leukaemia virus envelope gene and protection of immunized sheep against infection. Vaccine. 1991 Mar;9(3):194–200. [PubMed]
  • Portetelle D, Mammerickx M, Burny A. Use of two monoclonal antibodies in an ELISA test for the detection of antibodies to bovine leukaemia virus envelope protein gp51. J Virol Methods. 1989 Feb;23(2):211–222. [PubMed]
  • Reth M. Antigen receptor tail clue. Nature. 1989 Mar 30;338(6214):383–384. [PubMed]
  • Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985 Feb;82(3):677–681. [PMC free article] [PubMed]
  • Vonèche V, Portetelle D, Kettmann R, Willems L, Limbach K, Paoletti E, Ruysschaert JM, Burny A, Brasseur R. Fusogenic segments of bovine leukemia virus and simian immunodeficiency virus are interchangeable and mediate fusion by means of oblique insertion in the lipid bilayer of their target cells. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3810–3814. [PMC free article] [PubMed]
  • Willems L, Grimonpont C, Heremans H, Rebeyrotte N, Chen G, Portetelle D, Burny A, Kettmann R. Mutations in the bovine leukemia virus Tax protein can abrogate the long terminal repeat-directed transactivating activity without concomitant loss of transforming potential. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3957–3961. [PMC free article] [PubMed]
  • Willems L, Heremans H, Chen G, Portetelle D, Billiau A, Burny A, Kettmann R. Cooperation between bovine leukaemia virus transactivator protein and Ha-ras oncogene product in cellular transformation. EMBO J. 1990 May;9(5):1577–1581. [PMC free article] [PubMed]
  • Willems L, Kerkhofs P, Dequiedt F, Portetelle D, Mammerickx M, Burny A, Kettmann R. Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11532–11536. [PMC free article] [PubMed]
  • Willems L, Kettmann R, Dequiedt F, Portetelle D, Vonèche V, Cornil I, Kerkhofs P, Burny A, Mammerickx M. In vivo infection of sheep by bovine leukemia virus mutants. J Virol. 1993 Jul;67(7):4078–4085. [PMC free article] [PubMed]
  • Willems L, Portetelle D, Kerkhofs P, Chen G, Burny A, Mammerickx M, Kettmann R. In vivo transfection of bovine leukemia provirus into sheep. Virology. 1992 Aug;189(2):775–777. [PubMed]
  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...