• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of amjpatholAmerican Journal of Pathology For AuthorsAmerican Journal of Pathology SubscribeAmerican Journal of Pathology SearchAmerican Journal of Pathology Current IssueAmerican Journal of Pathology About the JournalAmerican Journal of Pathology
Am J Pathol. Jun 1996; 148(6): 1925–1933.
PMCID: PMC1861625

Interferon-gamma-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology.

Abstract

Giant cell vasculitis is an arteritis that predominantly affects medium- and large-sized arteries. Genetic risk factors and clonal expansion of selected CD4+ T cell specificities in the vascular lesions support the model that giant cell arteritis is a T-cell-driven disease. Interferon (IFN)-gamma production in the tissue is intimately associated with the formation of the inflammatory infiltrates. Antigens inducing stimulation of T cells are unknown. To provide indirect evidence for the type and the tissue localization of the antigen, we examined CD4+ T cells in the lesions that secrete IFN-gamma. Temporal artery specimens from patients with giant cell arteritis were analyzed bu two-color immunohistochemistry applying antibodies to T cell markers. IFN-gamma, the interleukin-2 receptor alpha-chain (CD25) and talin, a cytoskeletal protein that is reorganized in T cells interacting with antigen-presenting cells. Proliferating cells in the lesions were identified through the expression of the Ki-67 nuclear antigen. More than 90% of tissue-infiltrating IFN-gamma-producing cells were CD4+ CD45RO+. They represented a minute subset (2 to 4%) of tissue-infiltrating T cells. IFN-gamma+ T cells aggregated in the adventitial layer of the inflamed artery where they were either diffusely distributed or arranged in clusters. The majority of IFN-gamma-secreting T cells expressed CD25. IFN-gamma+ T cells included a fraction of cells that had reorganized the cytoskeletal protein talin, indicating an interaction of the T cell receptor and an antigen-presenting cell. A subset of IFN-gamma-expressing T cells was undergoing proliferation in the tissue. IFN-gamma-producing T cells in vasculitic lesions of giant cell arteritis express several markers that identify them as T cells that have recently been stimulated through their antigen-specific receptor. These putatively disease-relevant T cells represent only a very minor fraction of tissue-infiltrating cells. Their preferential accumulation in the adventitia is most compatible with the model that they contact the relevant antigen primarily in this particular region of the artery. Their regulatory function appears to extend into the inner media and intima where pathological changes in giant cell arteritis are most pronounced.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Hunder GG, Michet CJ. Giant cell arteritis and polymyalgia rheumatica. Clin Rheum Dis. 1985 Dec;11(3):471–483. [PubMed]
  • Lie JT. Illustrated histopathologic classification criteria for selected vasculitis syndromes. American College of Rheumatology Subcommittee on Classification of Vasculitis. Arthritis Rheum. 1990 Aug;33(8):1074–1087. [PubMed]
  • Banks PM, Cohen MD, Ginsburg WW, Hunder GG. Immunohistologic and cytochemical studies of temporal arteritis. Arthritis Rheum. 1983 Oct;26(10):1201–1207. [PubMed]
  • Weyand CM, Goronzy JJ. Giant cell arteritis as an antigen-driven disease. Rheum Dis Clin North Am. 1995 Nov;21(4):1027–1039. [PubMed]
  • Weyand CM, Hicok KC, Hunder GG, Goronzy JJ. The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest. 1992 Dec;90(6):2355–2361. [PMC free article] [PubMed]
  • Weyand CM, Schönberger J, Oppitz U, Hunder NN, Hicok KC, Goronzy JJ. Distinct vascular lesions in giant cell arteritis share identical T cell clonotypes. J Exp Med. 1994 Mar 1;179(3):951–960. [PMC free article] [PubMed]
  • Weyand CM, Hicok KC, Hunder GG, Goronzy JJ. Tissue cytokine patterns in patients with polymyalgia rheumatica and giant cell arteritis. Ann Intern Med. 1994 Oct 1;121(7):484–491. [PubMed]
  • Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science. 1989 Jan 20;243(4889):355–361. [PubMed]
  • Minami Y, Kono T, Miyazaki T, Taniguchi T. The IL-2 receptor complex: its structure, function, and target genes. Annu Rev Immunol. 1993;11:245–268. [PubMed]
  • Kupfer A, Swain SL, Singer SJ. The specific direct interaction of helper T cells and antigen-presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane-associated cytoskeleton inside the bound helper T cells. J Exp Med. 1987 Jun 1;165(6):1565–1580. [PMC free article] [PubMed]
  • Kupfer A, Burn P, Singer SJ. The PMA-induced specific association of LFA-1 and talin in intact cloned T helper cells. J Mol Cell Immunol. 1990;4(6):317–325. [PubMed]
  • Kupfer H, Monks CR, Kupfer A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med. 1994 May 1;179(5):1507–1515. [PMC free article] [PubMed]
  • Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E, Flad HD. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol. 1991 Apr;138(4):867–873. [PMC free article] [PubMed]
  • Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol. 1990;8:579–621. [PubMed]
  • Haqqi TM, Anderson GD, Banerjee S, David CS. Restricted heterogeneity in T-cell antigen receptor V beta gene usage in the lymph nodes and arthritic joints of mice. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1253–1255. [PMC free article] [PubMed]
  • Howell MD, Diveley JP, Lundeen KA, Esty A, Winters ST, Carlo DJ, Brostoff SW. Limited T-cell receptor beta-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10921–10925. [PMC free article] [PubMed]
  • Paliard X, West SG, Lafferty JA, Clements JR, Kappler JW, Marrack P, Kotzin BL. Evidence for the effects of a superantigen in rheumatoid arthritis. Science. 1991 Jul 19;253(5017):325–329. [PubMed]
  • Williams WV, Fang Q, Demarco D, VonFeldt J, Zurier RB, Weiner DB. Restricted heterogeneity of T cell receptor transcripts in rheumatoid synovium. J Clin Invest. 1992 Aug;90(2):326–333. [PMC free article] [PubMed]
  • Cohen JJ, Duke RC, Fadok VA, Sellins KS. Apoptosis and programmed cell death in immunity. Annu Rev Immunol. 1992;10:267–293. [PubMed]
  • Webb S, Morris C, Sprent J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell. 1990 Dec 21;63(6):1249–1256. [PubMed]
  • Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993 Apr 22;362(6422):758–761. [PubMed]
  • Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. [PubMed]
  • Pober JS, Cotran RS. Immunologic interactions of T lymphocytes with vascular endothelium. Adv Immunol. 1991;50:261–302. [PubMed]
  • Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem. 1990;59:783–836. [PubMed]
  • Paulnock DM. Macrophage activation by T cells. Curr Opin Immunol. 1992 Jun;4(3):344–349. [PubMed]
  • Wagner AD, Goronzy JJ, Weyand CM. Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. J Clin Invest. 1994 Sep;94(3):1134–1140. [PMC free article] [PubMed]
  • Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell. 1986 Jul 18;46(2):155–169. [PubMed]
  • Roberts AB, McCune BK, Sporn MB. TGF-beta: regulation of extracellular matrix. Kidney Int. 1992 Mar;41(3):557–559. [PubMed]
  • Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. [PubMed]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...